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This two-volume text in harmonic analysis introduces a wealth of
analytical results and techniques. It is largely self-contained and will be
useful to graduate students and researchers in both pure and applied
analysis. Numerous exercises and problems make the text suitable for
self-study and the classroom alike. This first volume starts with
classical one-dimensional topics: Fourier series; harmonic functions;
Hilbert transform. Then the higher-dimensional Calderon-Zygmund

and Littlewood-Paley theories are developed. Probabilistic methods and
their applications are discussed, as are applications of harmonic
analysis to partial differential equations. The volume concludes with an
introduction to the Weyl calculus. The second volume goes beyond the
classical to the highly contemporary and focuses on multilinear aspects
of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer
theory; Carleson's resolution of the Lusin conjecture; Calderon's
commutators and the Cauchy integral on Lipschitz curves. The material
in this volume has not previously appeared together in book form.



