Record Nr.	UNINA9910462560103321
Titolo	Complex Materials in Physics and Biology [[electronic resource]] : proceedings of the International School of Physics "Enrico Fermi" / / ed. by Francesco Mallamace, H. Eugene Stanley
Pubbl/distr/stampa	Amsterdam, : los Press, 2012
ISBN	1-299-33312-5 1-61499-071-9
Descrizione fisica	1 online resource (449 p.)
Collana	Proceedings of the International School of Physics "Enrico Fermi" Complex materials in physics and biology
Altri autori (Persone)	MallamaceF (Franco) StanleyH. Eugene <1941-> (Harry Eugene)
Disciplina	003
Soggetti	System theory Nonlinear systems Statistical physics Scaling laws (Statistical physics) Electronic books.
Lingua di pubblicazione	Inglese
Lingua di pubblicazione Formato	Materiale a stampa
	Materiale a stampa Monografia
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia

1.

general approach; Higher-order wetting transitions; Overview of other models

Geometrical characterization of dynamical heterogeneities in chemical gels, colloidal gels and colloidal glassesIntroduction; Mode coupling theory and the glass transition; Dynamical heterogeneities; Dynamical susceptibility; Non-Gaussian parameter; Dynamical heterogeneities and mode coupling theory; Dynamical heterogeneities: from chemical gels to structural glasses; Dynamical heterogeneities in chemical gels; Dynamical heterogeneities in colloidal gels; Dynamical heterogeneities in structural glasses; Conclusions; Lectures on molecular- and nanoscale fluctuations in water

Lecture one: tetrahedral condensed matterMolecular structure; Diffusion; Chemistry in water; Density fluctuations; Electric field fluctuations; Water auto-ionization; Lecture two: Solvation; Solvation free energies; Solvation of small excluded volumes; Solvation of ions; Solvation of large solutes; Lecture three: Hydrophobicity and selfassembly; The driving force for hydrophobic assembly; Micelle assembly: Dewetting transitions in hydrophobic assembly: Theory of dewetting; Applications and hydrophobic collapse; Water and anomalous liquids; An overview on anomalous liquids and water Thermodynamic anomaliesDynamic anomalies: Structural anomalies and polymorphism; A few questions; A Hamiltonian model for water; Phase diagram and supercooled water; Water confined between hydrophobic surfaces; Percolating approach; Dynamical crossover; Liquid-liquid phase transitions; Conclusions; Dynamic crossover phenomenon in confined water and its relation to the liquid-liquid critical point: Experiments and MD simulations; The density minimum, peaking of thermal expansion coefficient and equation of state (EOS) of 1-D confined water

Dynamic crossover in the alpha-relaxation times of 1-D and 3-D confined water