
UNINA99104624746033211. Record Nr.

Titolo Structured parallel programming [[electronic resource] ] : patterns for
efficient computation / / Michael McCool, Arch D. Robison, James
Reinders

Pubbl/distr/stampa Amsterdam ; ; Boston, Mass., : Elsevier/Morgan Kaufmann, 2012

ISBN 1-280-77921-7
9786613689603
0-12-391443-4

Descrizione fisica 1 online resource (433 p.)

Altri autori (Persone) RobisonArch D
ReindersJames

Disciplina 005.1
005.275

Soggetti Parallel programming (Computer science)
Structured programming
Electronic books.

Lingua di pubblicazione Inglese

Formato

Edizione [1st edition]

Livello bibliografico

Note generali Description based upon print version of record.

Nota di bibliografia

Nota di contenuto

Includes bibliographical references and index.

Front Cover; Structured Parallel Programming: Patterns for Efficient
Computation; Copyright; Table of Contents; Listings; Preface;
Preliminaries; 1 Introduction; 1.1 Think Parallel; 1.2 Performance; 1.3
Motivation: Pervasive Parallelism; 1.3.1 Hardware Trends Encouraging
Parallelism; 1.3.2 Observed Historical Trends in Parallelism; 1.3.3 Need
for Explicit Parallel Programming; 1.4 Structured Pattern-Based
Programming; 1.5 Parallel Programming Models; 1.5.1 Desired
Properties; 1.5.2 Abstractions Instead of Mechanisms; 1.5.3 Expression
of Regular Data Parallelism; 1.5.4 Composability
1.5.5 Portability of Functionality1.5.6 Performance Portability; 1.5.7
Safety, Determinism, and Maintainability; 1.5.8 Overview of
Programming Models Used; Cilk Plus; Threading Building Blocks (TBB);
OpenMP; Array Building Blocks (ArBB); OpenCL; 1.5.9 When to Use
Which Model?; 1.6 Organization of this Book; 1.7 Summary; 2
Background; 2.1 Vocabulary and Notation; 2.2 Strategies; 2.3
Mechanisms; 2.4 Machine Models; 2.4.1 Machine Model; Instruction

Autore McCool Michael

Materiale a stampa

Monografia



Sommario/riassunto

Parallelism; Memory Hierarchy; Virtual Memory; Multiprocessor
Systems; Attached Devices; 2.4.2 Key Features for Performance; Data
Locality
Parallel Slack2.4.3 Flynn's Characterization; 2.4.4 Evolution; 2.5
Performance Theory; 2.5.1 Latency and Throughput; 2.5.2 Speedup,
Efficiency, and Scalability; 2.5.3 Power; 2.5.4 Amdahl's Law; 2.5.5
Gustafson-Barsis' Law; 2.5.6 Work-Span Model; 2.5.7 Asymptotic
Complexity; 2.5.8 Asymptotic Speedup and Efficiency; 2.5.9 Little's
Formula; 2.6 Pitfalls; 2.6.1 Race Conditions; 2.6.2 Mutual Exclusion and
Locks; 2.6.3 Deadlock; 2.6.4 Strangled Scaling; 2.6.5 Lack of Locality;
2.6.6 Load Imbalance; 2.6.7 Overhead; 2.7 Summary; I Patterns; 3
Patterns; 3.1 Nesting Pattern
3.2 Structured Serial Control Flow Patterns3.2.1 Sequence; 3.2.2
Selection; 3.2.3 Iteration; 3.2.4 Recursion; 3.3 Parallel Control Patterns;
3.3.1 Fork-Join; 3.3.2 Map; 3.3.3 Stencil; 3.3.4 Reduction; 3.3.5 Scan;
3.3.6 Recurrence; 3.4 Serial Data Management Patterns; 3.4.1 Random
Read and Write; 3.4.2 Stack Allocation; 3.4.3 Heap Allocation; 3.4.4
Closures; 3.4.5 Objects; 3.5 Parallel Data Management Patterns; 3.5.1
Pack; 3.5.2 Pipeline; 3.5.3 Geometric Decomposition; 3.5.4 Gather;
3.5.5 Scatter; 3.6 Other Parallel Patterns; 3.6.1 Superscalar Sequences;
3.6.2 Futures
3.6.3 Speculative Selection3.6.4 Workpile; 3.6.5 Search; 3.6.6
Segmentation; 3.6.7 Expand; 3.6.8 Category Reduction; 3.6.9 Term
Graph Rewriting; 3.7 Non-Deterministic Patterns; 3.7.1 Branch and
Bound; 3.7.2 Transactions; 3.8 Programming Model Support for
Patterns; 3.8.1 Cilk Plus; Nesting, Recursion, Fork-Join; Reduction; Map,
Workpile; Scatter, Gather; 3.8.2 Threading Building Blocks; Nesting,
Recursion, Fork-Join; Map; Workpile; Reduction; Scan; Pipeline;
Speculative Selection, Branch and Bound; 3.8.3 OpenMP; Map, Workpile;
Reduction; Fork-Join
Stencil, Geometric Decomposition, Gather, Scatter

Programming is now parallel programming. Much as structured
programming revolutionized traditional serial programming decades
ago, a new kind of structured programming, based on patterns, is
relevant to parallel programming today. Parallel computing experts and
industry insiders Michael McCool, Arch Robison, and James Reinders
describe how to design and implement maintainable and efficient
parallel algorithms using a pattern-based approach. They present both
theory and practice, and give detailed concrete examples using
multiple programming models. Examples are primarily given using two
of


