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Programming is now parallel programming. Much as structured
programming revolutionized traditional serial programming decades
ago, a new kind of structured programming, based on patterns, is
relevant to parallel programming today. Parallel computing experts and
industry insiders Michael McCool, Arch Robison, and James Reinders
describe how to design and implement maintainable and efficient
parallel algorithms using a pattern-based approach. They present both
theory and practice, and give detailed concrete examples using
multiple programming models. Examples are primarily given using two
of


