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This book explores the similarities and differences between the practice
of psychotherapy and spiritual direction and suggests that, whilst there
may be distinctions between the two activities, the process is
essentially the same. The purpose of the book is to improve the
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understanding between therapists and spiritual directors, to encourage
dialogue and discussion between them, as well as to offer challenges
and learning to both. In the process of exploring the interface between
the practice of therapy and the practice of spiritual direction, questions
arise about how to address issues of spirituality in a psychological
context and psychological issues in a spiritual context. A brief overview
of the historical background to spiritual direction is given, and

attention drawn to the links between this tradition and the development
of psychotherapy. Spiritual issues that may arise in therapy together
with psychological issues that occur during spiritual direction are
discussed, leading on to a comparison between 'dark night of the soul'
experiences and clinical depression.
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Python is a robust, procedural, object-oriented, and functional

language. The features of the language make it valuable for web
development, game development, business, and scientific
programming. This book deals with problem-solving and programming
in Python. It concentrates on the development of efficient algorithms,
the syntax of the language, and the ability to design programs in order
to solve problems. In addition to standard Python topics, the book has
extensive coverage of NumPy, data visualization, and Matplotlib.
Numerous types of exercises, including theoretical, programming, and
multiple-choice, reinforce the concepts covered in each chapter.
FEATURES:Concentrates on the development of efficient algorithms, the
syntax of the language, and theability to design programs in order to
solve problemsFeatures both standard Python topics and also extensive
coverage of NumPy, data visualization, and Matplotlib problem-solving
techniques



