1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione
Descrizione fisica
Collana

Disciplina

Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

Sommario/riassunto

UNINA9910461195003321

Harborne Lynette

Psychotherapy and Spiritual Direction : Two Languages, One Voice? / /
by Lynette Harborne

Boca Raton, FL : , : Routledge, , [2018]

©2012

0-429-90403-7
0-429-47926-3
1-280-49518-9
9786613590411
1-84940-979-X

[First edition.]
1 online resource (170 pages)
UKCP Karnac series

158.3
616.8914

Psychotherapy - Religious aspects
Counseling - Religious aspects
Spirituality - Psychology

Spiritual direction

Electronic books.

Inglese

Materiale a stampa

Monografia

Description based upon print version of record.
Includes bibliographical references and index.

Chapter 1 Setting the scene -- chapter 2 A common heritage? --
chapter 3 Spiritual issues in therapy: the hidden ingredient? -- chapter
4 Psychological issues in spiritual direction -- chapter 5 Depression or
Dark Night of the Soul? -- chapter 6 Ethical and boundary issues --
chapter 7 Power in the encounter -- chapter 8 Spirituality in the
therapy room?is it OK to pray? -- chapter 9 Training: or should it be
formation? -- chapter 10 My heretical question: can spiritual direction
be considered a modality of psychotherapy? -- References -- Index

This book explores the similarities and differences between the practice
of psychotherapy and spiritual direction and suggests that, whilst there
may be distinctions between the two activities, the process is
essentially the same. The purpose of the book is to improve the



2. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato
Livello bibliografico

Nota di contenuto

understanding between therapists and spiritual directors, to encourage
dialogue and discussion between them, as well as to offer challenges
and learning to both. In the process of exploring the interface between
the practice of therapy and the practice of spiritual direction, questions
arise about how to address issues of spirituality in a psychological
context and psychological issues in a spiritual context. A brief overview
of the historical background to spiritual direction is given, and

attention drawn to the links between this tradition and the development
of psychotherapy. Spiritual issues that may arise in therapy together
with psychological issues that occur during spiritual direction are
discussed, leading on to a comparison between 'dark night of the soul'
experiences and clinical depression.

UNINA9910915680903321
Bhasin Harsh
Python Programming Using Problem Solving

Bloomfield : , : Mercury Learning & Information, , 2023
©2023

1-68392-861-X

1-68392-860-1

[1st ed.]

1 online resource (601 pages)

005.133

Python (Computer program language)
COMPUTERS / General

Inglese
Materiale a stampa
Monografia

Cover -- Half-Title -- Title -- Copyright -- Dedication -- Content --
Preface -- Section I. Algorithmic Problem-Solving and Python
Fundamentals -- Chapter 1: Algorithmic Problem-Solving -- 1.1
Introduction -- 1.2 Definition and Characteristics -- 1.3 Notations:
Pseudocode and Flow Chart -- 1.4 Strategies for Problem-Solving:
Recursion Versus lteration -- 1.5 Asymptotic Notation -- 1.6
Complexity -- 1.7 lllustrations -- 1.7.1 Minimum in a List -- 1.7.2



Insert a Card in a Pack of Cards (Or Insert an element ina sorted list).
There are ten cards in the pack, numbered from 1 to 10. -- 1.7.3
Guess a Number in a Given Range -- 1.7.4 Tower of Hanoi -- 1.8
Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple
Choice Questions -- Theory -- Application -- Chapter 2: Introduction
to Python -- 2.1 Introduction -- 2.2 Features of Python -- 2.2.1 Easy

-- 2.2.2 Type and Run -- 2.2.3 Syntax -- 2.2.4 Mixing -- 2.2.5
Dynamic Typing -- 2.2.6 Built-in Object Types -- 2.2.7 Numerous
Libraries and Tools -- 2.2.8 Portable -- 2.2.9 Free -- 2.3 The
Paradigms -- 2.3.1 Procedural -- 2.3.2 Object-Oriented -- 2.3.3
Functional -- 2.4 Chronology and Uses -- 2.4.1 Chronology -- 2.4.2
Uses -- 2.5 Installation of Anaconda -- 2.6 Implementation of an
Algorithm: Statement, State, Control Blocks, and Functions -- 2.6.1
Statement -- 2.6.2 State -- 2.6.3 Control Flow -- 2.7 Conclusion --
Glossary -- Points to Remember -- Resources -- Exercises -- Multiple
Choice Questions -- Theory -- Chapter 3: Fundamentals -- 3.1
Introduction -- 3.2 Basic Input Output -- 3.2.1 Print Function -- 3.2.2
Input -- 3.3 Running a Program -- 3.3.1 Using the Command Prompt
-- 3.3.2 Executing Programs Written in .py Files -- 3.3.3 Using
Anaconda Navigator -- 3.4 The Jupyter Notebook -- 3.5 Value Type
and Reference Type -- 3.6 Tokens, Keywords, and Identifiers -- 3.6.1
Python Keywords.

3.6.2 Python Identifiers -- 3.6.3 Python Escape Sequence -- 3.7
Statements -- 3.7.1 Expression Statement -- 3.7.2 Assignment
Statements -- 3.7.3 The Assert Statements -- 3.7.4 The Pass
Statements -- 3.7.5 The Control Statements -- 3.8 Comments -- 3.9
Operators -- 3.10 Types and Examples of Operators -- 3.10.1
Arithmetic Operators -- 3.10.2 String Operators -- 3.10.3 Comparison
Operators -- 3.10.4 Assignment Operators -- 3.10.5 Logical Operators
-- 3.10.6 Priority of Operators -- 3.11 Basic Data Types -- 3.11.1
Integer -- 3.11.2 Float -- 3.11.3 String -- 3.12 Conclusion --

Exercises -- Multiple Choice Questions -- Theory -- Explore -- Section
[I: Procedural Programming -- Chapter 4: Conditional Statements --
4.1 Introduction -- 4.2 "If," If-Else, and If-Elif-Else Constructs -- 4.3
The If-Elif-Else Ladder -- 4.4 Logical Operators -- 4.5 The Ternary
Operator -- 4.6 The Get Construct -- 4.7 Examples -- 4.8 Summary --
Glossary -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Programming Exercises -- Chapter 5: Looping -- 5.1
Introduction -- 5.2 While -- 5.3 Patterns -- 5.4 Nesting and
Applications of Loops in Lists -- 5.5 Conclusion -- Glossary -- Points
to Remember -- Exercises -- Multiple Choice Questions --
Programming Exercises -- Chapter 6: Functions -- 6.1 Introduction --
6.2 Features of a Function -- 6.2.1 Modular Programming -- 6.2.2
Reusability of Code -- 6.2.3 Manageability -- 6.2.3.1 Easy debugging
-- 6.2.3.2 Efficient -- 6.3 Basic Terminology -- 6.3.1 Name of a
Function -- 6.3.2 Arguments -- 6.3.3 Return Value -- 6.4 Definition
and Invocation -- 6.4.1 Working -- 6.5 Types of Function -- 6.5.1
Arguments: Types of Arguments -- 6.6 Implementing Search -- 6.7
Scope -- 6.8 Recursion -- 6.8.1 Rabbit Problem -- 6.8.2
Disadvantages of Using Recursion -- 6.9 Conclusion -- Glossary --
Points to Remember -- Exercises.

Multiple Choice Questions -- Programming Exercises -- Questions
Based on Recursion -- Theory -- Extra Questions -- Chapter 7: File
Handling -- 7.1 Introduction -- 7.2 The File Handling Mechanism --
7.3 The Open Function and File Access Modes -- 7.4 Python Functions
for File Handling -- 7.4.1 The Essential Ones -- 7.4.2 The OS Methods
-- 7.4.3 Miscellaneous Functions and File Attributes -- 7.5 Command
Line Arguments -- 7.6 Implementation and illustrations -- 7.7



Conclusion -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Theory -- Programming Exercises -- Chapter 8: Lists,
tuple, and Dictionar -- 8.1 Introduction -- 8.2 Lists -- 8.2.1 Accessing
Elements: Indexing and Slicing -- 8.2.2 Mutability -- 8.2.3 Operators
-- 8.2.4 Traversal -- 8.2.5 Functions -- 8.3 Tuple -- 8.3.1 Accessing
Elements of a Tuple -- 8.3.2 Nonmutability -- 8.3.3 Operators -- 8.3.4
Traversal -- 8.3.5 Functions -- 8.4 Associate Arrays and Dictionaries
-- 8.4.1 Displaying Elements of a Dictionary -- 8.4.2 Some Important
Functions of Dictionaries -- 8.4.2.1 The len function returns the
number of elements in a given dictionary. -- 8.4.2.2 The max function
returns the key with maximum value. If the key is a string, then the
value in the lexicographic ordering would be returned. -- 8.4.2.3 The
min function returns the key with minimum value. If the key is a string,
then the value in the lexicographic ordering would be returned. --
8.4.2.4 The sorted function would sort the elements of a given
dictionary by their keys. If the keys are strings then lexicographic
ordering would be followed. -- 8.4.2.5 The pop function takes out the
element with the given key from the dictionary. -- 8.4.3 Input from the
User -- 8.5 Conclusion -- Glossary -- Points to Remember --
Exercises -- Multiple Choice Questions -- Theory -- Programming
Exercises.

Chapter 9: Iterations, Generators, and Comprehensions -- 9.1
Introduction -- 9.2 The Power of "For -- 9.3 Iterator -- 9.4 Defining an
Iterable Object -- 9.5 Generators -- 9.6 Comprehensions -- 9.7
Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple
Choice Questions -- Theory -- Programming Exercises -- Chapter 10:
Strings -- 10.1 Introduction -- 10.2 Loops Revised -- 10.3 String
Operators -- 10.3.1 The Concatenation Operator (+) -- 10.3.2 The
Replication Operator (*) -- 10.3.3 The Membership Operator -- 10.4
In-Built Functions -- 10.4.1 len() -- 10.4.2 Capitalize() -- 10.4.3 Find()
--10.4.4 Count -- 10.4.5 endswith() -- 10.4.6 encode -- 10.4.7
decode -- 10.4.8 Miscellaneous Functions -- 10.5 Conclusion --
Glossary -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Theory -- Section IlI: Object-Oriented Programming --
Chapter 11: Introduction to Object-Oriented Paradigm -- 11.1
Introduction -- 11.2 Creating New Types -- 11.3 Attributes and
Functions -- 11.3.1 Attributes -- 11.3.2 Functions -- 11.4 Elements of
Object-Oriented Programming -- 11.4.1 Class -- 11.4.2 Object --
11.4.3 Encapsulation -- 11.4.4 Data Hiding -- 11.4.5 Inheritance --
11.4.6 Polymorphism -- 11.4.7 Reusability -- 11.5 Conclusion --
Glossary -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Theory -- Explore and Design -- Chapter 12: Classes and
Objects -- 12.1 Introduction to Classes -- 12.2 Defining a Class --
12.3 Creating an Object -- 12.4 Scope of Data Members -- 12.5
Nesting -- 12.6 Constructor -- 12.7 Multiple __Init__(s) -- 12.8
Destructors -- 12.9 Conclusion -- Glossary -- Points to Remember --
Exercises -- Multiple Choice Questions -- Theory -- Programming
Exercises -- Chapter 13: Inheritance -- 13.1 Introduction to
Inheritance and Composition -- 13.1.1 Inheritance and Methods --
13.1.2 Compoaosition.

13.2 Inheritance: Importance and Types -- 13.2.1 Need for Inheritance
--13.2.2 Types of Inheritance -- 13.2.2.1 Simple inheritance --
13.2.2.2 Hierarchical inheritance -- 13.2.2.3 Multilevel inheritance --
13.2.2.4 Multiple inheritance and hybrid inheritance -- 13.3 Methods
-- 13.3.1 Bound Methods -- 13.3.2 Unbound Method -- 13.3.3
Methods are Callable Objects -- 13.3.4 The Importance and Usage of
Super -- 13.3.5 Calling the Base Class Function Using Super -- 13.4
Search in Inheritance Tree -- 13.5 Class Interface and Abstract Classes



Sommario/riassunto

-- 13.6 Conclusion -- Glossary -- Points to Remember -- Exercises --
Multiple Choice Questions -- Theory -- Programming Exercises --
Chapter 14: Operator Overloading -- 14.1 Introduction -- 14.2 __ Init__
Revisited -- 14.2.1 Overloading __init__ (Sort of) -- 14.3 Methods for
Overloading Binary Operators -- 14.4 Overloading Binary Operators:
The Fraction Example -- 14.5 Overloading the += Operator -- 14.6
Overloading the &gt -- and &lt -- Operators -- 14.7 Overloading the
__Bool__ Operator: Precedence of __Bool__ Over _Len__ --14.8
Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple
Choice Questions -- Theory -- Programming Exercises -- Chapter 15:
Exception Handling -- 15.1 Introduction -- 15.2 Importance and
Mechanism -- 15.2.1 An Example of Try/Except -- 15.2.2 Manually
Raising Exceptions -- 15.3 Build-in Exceptions in Python -- 15.4 The
Process -- 15.4.1 Example -- 15.4.2 Exception Handling: Try/Except
-- 15.4.3 Raising Exceptions -- 15.5 Crafting User Defined Exceptions
-- 15.6 An Example of Exception Handling -- 15.7 Conclusion --
Glossary -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Theory -- Programming Exercises -- Section 1V: Numpy,
Pandas, and Matplotlib -- Chapter 16: Numpy-I -- 16.1 Introduction --
16.2 Fundamentals.

16.2.1 Similarity and Differences Between a List and a NumPy Array.

Python is a robust, procedural, object-oriented, and functional

language. The features of the language make it valuable for web
development, game development, business, and scientific
programming. This book deals with problem-solving and programming
in Python. It concentrates on the development of efficient algorithms,
the syntax of the language, and the ability to design programs in order
to solve problems. In addition to standard Python topics, the book has
extensive coverage of NumPy, data visualization, and Matplotlib.
Numerous types of exercises, including theoretical, programming, and
multiple-choice, reinforce the concepts covered in each chapter.
FEATURES:Concentrates on the development of efficient algorithms, the
syntax of the language, and theability to design programs in order to
solve problemsFeatures both standard Python topics and also extensive
coverage of NumPy, data visualization, and Matplotlib problem-solving
techniques



