Record Nr.	UNINA9910457515503321
Titolo	Decision making [[electronic resource]] : a psychophysics application of network science, Center for Nonlinear Science, University of North Texas, USA, 10-13 January 2010 / / editors, Paolo Grigolini, Bruce J. West
Pubbl/distr/stampa	Singapore ; ; Hackensack, N.J., : World Scientific, 2011
ISBN	1-283-43402-4 9786613434029 981-4365-82-3
Descrizione fisica	1 online resource (207 p.)
Collana	Studies of nonlinear phenomena in life science ; ; v. 15
Altri autori (Persone)	GrigoliniPaolo WestBruce J
Disciplina	612.8
Soggetti	Neural networks (Neurobiology) Chaotic behavior in systems Complexity (Philosophy) Decision making - Physiological aspects Electronic books.
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Description based upon print version of record.
Note generali Nota di bibliografia	Description based upon print version of record. Includes bibliographical references.

1.

	 Stevens); 4. A Network of Equations Issuing from the Entropic Form of the Psychophysical Law; 4.1. The differential threshold (DH from Fechner's conjecture) and Weber's fraction; 4.2. The hyperbolic law governing the magnitude of n (DH from Miller's magical number) 4.3. Simple reaction time (DH is the minimum quantity of information needed to react)5. Searching for Support within Thermodynamics and Statistical Physics; 5.1. Emergence of the Weber-Fechner law from thermodynamics; 6. Discussion; 6.1. Review; 6.2. Quantum Sufficiat; Acknowledgements; References; 4. The collective brain E. Tagliazucchi and D.R. Chialvo; 1. Introduction; 2. Emergent Complex Dynamics is always Critical; 3. The Collective Large-scale Brain Dynamics; 4. Neuronal Avalanching in Small Scale is Critical; 5. Psychophysics and Behavior; 6. An Evolutionary Perspective 7. Noise or Critical Fluctuations? Equilibrium vs Non-equilibrium8. Outlook; Acknowledgements; References; 5. Acquiring long-range memory through adaptive avalanches S. Boettcher; 1. Introduction; 2. Motivation from Self-organized Criticality; 3. Spin Glass Ground States with Extremal Optimization; 4. EO Dynamics; 5. Annealed Optimization Model; 6. Evolution Equations for Local Search Heuristics; 6.1. Extremal optimization; 6.3. Update probabilities for metropolis algorithms; 6.4. Evolution equations for a simple barrier model 6.5. Jamming model for -EOReferences; 6. Random walk of complex networks; From infinitely slow to instantaneous transition to equilibrium N.W. Hollingshad, P. Grigolini and P. Allegrini; 1. Introduction; 2. Preliminary Remarks on the Size of a Complex Network; 3. On the Master Matrix A; 4. Transition to Equilibrium in Hierarchical Networks; 5. Return to the Origin in a Scale-free Network; 5.1. Ad hoc scale-free network; 5.2. Hierarchical network; 6. Conclusions; Acknowledgements; References; 7. Coherence and complexity M. Bologna, E. Geneston, P. Grigolini, M. Turalska and M.
Sommario/riassunto	This invaluable book captures the proceedings of a workshop that brought together a group of distinguished scientists from a variety of disciplines to discuss how networking influences decision making. The individual lectures interconnect psychological testing, the modeling of neuron networks and brain dynamics to the transport of information within and between complex networks. Of particular importance was the introduction of a new principle that governs how complex networks talk to one another - the Principle of Complexity Management (PCM). PCM establishes that the transfer of information fr