	UNINA9910456184703321
Titolo	Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism [[electronic resource] /] / edited by Christine H. Foyer and Graham Noctor
Pubbl/distr/stampa	Dordrecht ; ; Boston, Mass., : Kluwer Academic Publishers, c2002
ISBN	0-306-48138-3
Edizione	[1st ed. 2002.]
Descrizione fisica	1 online resource (305 p.)
Collana	Advances in photosynthesis and respiration ; ; v. 12
Altri autori (Persone)	FoyerChristine H NoctorGraham
Disciplina	572/.5442
Soggetti	Nitrogen - Metabolism
	Plants - Assimilation
	Plants - Effect of Carbon on Plants - Respiration
	Photosynthesis
	Electronic books.
Lingua di pubblicazione	Inglese
Lingua di pubblicazione Formato	Inglese Materiale a stampa
Lingua di pubblicazione Formato Livello bibliografico	Inglese Materiale a stampa Monografia
Lingua di pubblicazione Formato Livello bibliografico Note generali	Inglese Materiale a stampa Monografia Description based upon print version of record.
Lingua di pubblicazione Formato Livello bibliografico Note generali Nota di bibliografia	Inglese Materiale a stampa Monografia Description based upon print version of record. Includes bibliographical references and index.

1.

	Assimilation Through Gene Expression Intracellular And Intercellular Transport Of Nitrogen And Carbon Optimizing Carbon-Nitrogen Budgets: Perspectives for Crop Improvement.
Sommario/riassunto	According to many textbooks, carbohydrates are the photosynthesis and mitochondrial respiration fluctuate in a circadian manner in almost every unique final products of plant photosynthesis. However, the photoautotrophic production of organic organism studied. In addition, external triggers and environmental influences necessitate precise and nitrogenous compounds may be just as old, in appropriate re- adjustment of relative flux rates, to evolutionary terms, as carbohydrate synthesis. In the algae and plants of today, the light-driven assimilation prevent excessive swings in energy/resource provision of nitrogen remains a key function, operating and use. This requires integrated control of the alongside and intermeshing with photosynthesis and expression and activity of numerous key enzymes in respiration. Photosynthetic production of reduced photosynthetic and respiratory pathways, in order to carbon and its reoxidation in respiration are necessary co-ordinate carbon partioning and nitrogen assim- ation. to produce both the energy and the carbon skeletons required for the incorporation of inorganic nitrogen This volume has two principal aims. The first is to into amino acids. Conversely, nitrogen assimilation provide a comprehensive account of the very latest developments in our understanding of how green is required to sustain the output of organic carbon cells reductively incorporate nitrate and ammonium and nitrogen. Together, the sugars and amino acids into the organic compounds required for growth.