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single-well potential -- 3.38. Radial wave function [psi](z) for as s-
electron in a classically allowed region containing the origin, when the
potential near the origin is dominated by a strong, attractive Coulomb
singularity, and the normalization factor is chosen such that, when the
radial variable z is dimensionless, [psi](z)/z tends to unity as z tends to
zero -- 3.39. Quantization condition, and value of the normalized wave
function at the origin expressed in terms of the level density, for as s-
electron in a single-well potential with a strong attractive Coulomb
singularity at the origin -- 3.40. Expectation value of an unspecified
function f(z) for a non-relativistic particle in a bound state -- 3.41.
Some cases in which the phase-integral expectation value formula
yields the expectation value exactly in the first-order approximation --
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This book provides a thorough introduction to one of the most efficient
approximation methods for the analysis and solution of problems in
theoretical physics and applied mathematics. It is written with practical
needs in mind and contains a discussion of 50 problems with solutions,
of varying degrees of difficulty. The problems are taken from quantum
mechanics, but the method has important applications in any field of
science involving second order ordinary differential equations. The
power of the asymptotic solution of second order differential equations
is demonstrated, and in each case the authors clearly indicate which
concepts and results of the general theory are needed to solve a



particular problem. This book will be ideal as a manual for users of the
phase-integral method, as well as a valuable reference text for
experienced research workers and graduate students.


