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Evidence that Einstein's addition is regulated by the Thomas precession
has come to light, turning the notorious Thomas precession, previously
considered the ugly duckling of special relativity theory, into the
beautiful swan of gyrogroup and gyrovector space theory, where it has
been extended by abstraction into an automorphism generator, called
the Thomas gyration. The Thomas gyration, in turn, allows the
introduction of vectors into hyperbolic geometry, where they are called
gyrovectors, in such a way that Einstein's velocity additions turns out to
be a gyrovector addition. Einstein's addition thus becomes a
gyrocommutative, gyroassociative gyrogroup operation in the same
way that ordinary vector addition is a commutative, associative group
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operation. Some gyrogroups of gyrovectors admit scalar multiplication,
giving rise to gyrovector spaces in the same way that some groups of
vectors that admit scalar multiplication give rise to vector spaces.
Furthermore, gyrovector spaces form the setting for hyperbolic
geometry in the same way that vector spaces form the setting for
Euclidean geometry. In particular, the gyrovector space with gyrovector
addition given by Einstein's (Möbius') addition forms the setting for the
Beltrami (Poincaré) ball model of hyperbolic geometry. The gyrogroup-
theoretic techniques developed in this book for use in relativity physics
and in hyperbolic geometry allow one to solve old and new important
problems in relativity physics. A case in point is Einstein's 1905 view of
the Lorentz length contraction, which was contradicted in 1959 by
Penrose, Terrell and others. The application of gyrogroup-theoretic
techniques clearly tilt the balance in favor of Einstein.


