Autore	UNINA9910454177003321
, latere	Miura-Mattausch Mitiko <1949->
Titolo	The physics and modeling of MOSFETS [[electronic resource]] : surface- potential model HiSIM / / Mitiko Miura-Mattausch, Hans Jurgen Mattausch, Tatsuya Ezaki
Pubbl/distr/stampa	Singapore ; ; Hackensack, NJ, : World Scientific, c2008
ISBN	1-281-96089-6 9786611960896 981-281-205-9
Descrizione fisica	1 online resource (378 p.)
Collana	International series on advances in solid state electronics and technology
Altri autori (Persone)	MattauschHans Jurgen EzakiTatsuya
Disciplina	621.3815/284015118
Soggetti	Metal oxide semiconductor field-effect transistors Metal oxide semiconductor field-effect transistors - Mathematical models Electronic books.
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
	Monograna
Note generali	Bibliographic Level Mode of Issuance: Monograph

1.

	and model parameters appearing in chapter 3 for advanced MOSFET phenomena modeling 4. Capacitances. 4.1. Intrinsic capacitances. 4.2. Overlap capacitances. 4.3. Longitudinal (lateral) -field-induced capacitance. 4.4. Fringing capacitance. 4.5. Summary of equations and model parameters appearing in chapter 4 for capacitances 5. Leakage currents and junction diode. 5.1. Leakage currents. 5.2. Bulk/source and bulk/drain junction models. 5.3. Summary of equations and model parameters appeared in chapter 5 for leakage currents and junction diode 6. Modeling of phenomena important for RF applications. 6.1. Noise models. 6.2. Non-Quasi-Static (NQS) model. 6.3. External MOS transistor resistances. 6.4. Summary of equations and model parameters appeared in chapter 6 for modeling of phenomena important for RF applications 7. Summary of HiSIM's model equations, parameters, and parameter-extraction method. 7.1. Model equations of HiSIM. 7.2. Model flags and exclusion of modeled effects. 7.3. Model parameters and their meaning. 7.4. Default values of the model parameter. 7.5. Parameter extraction method.
Sommario/riassunto	This volume provides a timely description of the latest compact MOS transistor models for circuit simulation. The first generation BSIM3 and BSIM4 models that have dominated circuit simulation in the last decade are no longer capable of characterizing all the important features of modern sub-100nm MOS transistors. This book discusses the second generation MOS transistor models that are now in urgent demand and being brought into the initial phase of manufacturing applications. It considers how the models are to include the complete drift-diffusion theory using the surface potential variable in the MOS transistor channel in order to give one characterization equation.