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Appendix C Historical and Other Comments

In the mathematical practice, the Baire category method is a tool for
establishing the existence of a rich array of generic structures.
However, in mathematics, the Baire category method is also behind a
number of fundamental results such as the Open Mapping Theorem or
the Banach-Steinhaus Boundedness Principle. This volume brings the
Baire category method to another level of sophistication via the internal
version of the set-theoretic forcing technique. It is the first systematic
account of applications of the higher forcing axioms with the stress on
the technique of building forcing notions



