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Sommario/riassunto This book presents a powerful way to study Einstein's special theory of
relativity and its underlying hyperbolic geometry in which analogies
with classical results form the right tool. It introduces the notion of
vectors into analytic hyperbolic geometry, where they are called
<i>gyrovectors</i>. Newtonian velocity addition is the common
vector addition, which is both commutative and associative. The
resulting vector spaces, in turn, form the algebraic setting for the
standard model of Euclidean geometry. In full analogy, Einsteinian
velocity addition is a gyrovector addition, which is both



