
UNINA99104534315033211. Record Nr.

Titolo OpenCL programming by example / / Ravishekhar Banger, Koushik
Bhattacharyya

Pubbl/distr/stampa Birmingham : , : Packt Publishing, , 2013

ISBN 1-84969-235-1

Descrizione fisica 1 online resource (304 p.)

Collana Community experience distilled

Altri autori (Persone) BhattacharyyaKoushik

Disciplina 005.2/75

Soggetti OpenCL (Computer program language)
Paraelle programming (Computer science)
Electronic books.

Lingua di pubblicazione Inglese

Formato

Edizione [1st edition]

Livello bibliografico

Note generali Includes index.

Nota di contenuto Cover; Copyright; Credits; About the Authors; About the Reviewers;
www.PacktPub.com; Table of Contents; Preface; Chapter 1: Hello
OpenCL; Advances in computer architecture; Different parallel
programming techniques; OpenMP; MPI; OpenACC; CUDA; CUDA or
OpenCL?; Renderscripts; Hybrid parallel computing model; Introduction
to OpenCL; Hardware and software vendors; Advanced Micro Devices,
Inc. (AMD); NVIDIA®; Intel®; ARM MaliTM GPUs; OpenCL components;
An example OpenCL program; Basic software requirements; Windows;
Linux; Installing and setting up an OpenCL compliant computer;
Installation steps
Installing OpenCL on a Linux system with an AMD graphics card
Installing OpenCL on a Linux system with an NVIDIA graphics card;
Installing OpenCL on a Windows system with an AMD graphics card;
Installing OpenCL on a Windows system with an NVIDIA graphics card;
Apple OSX; Multiple installations; Implement the SAXPY routine in
OpenCL; Summary; References; Chapter 2: OpenCL Architecture;
Platform model; AMD A10 5800K APUs; AMD RadeonTM HD 7870
Graphics Processor; NVIDIA® GeForce® GTC 680 GPU; Intel® IVY bridge;
Platform versions; Query Platforms; Query devices; Execution model;
NDRange
OpenCL context OpenCL command queue; Memory model; Global
memory; Constant memory; Local memory; Private memory; OpenCL

Autore Banger Ravishekhar

Materiale a stampa

Monografia



Sommario/riassunto

ICD; What is an OpenCL ICD?; Application scaling; Summary; Chapter 3:
OpenCL Buffer Objects; Memory Objects; Creating Subbuffer objects;
Histogram calculation; Algorithm; OpenCL Kernel Code; The Host Code;
Reading and writing buffers; Blocking_read and Blocking_write;
Rectangular or cuboidal reads; Copying buffers; Mapping buffer
objects; Querying buffer objects; Undefined behavior of the cl_mem
objects; Summary; Chapter 4: OpenCL Images; Creating images
Image format descriptor cl_image_format Image details descriptor
cl_image_desc; Passing image buffers to kernels; Samplers; Reading
and writing buffers; Copying and filling images; Mapping image
objects; Querying image objects; Image histogram computation;
Summary; Chapter 5: OpenCL Program and Kernel Objects; Creating
program objects; Creating and building program objects; OpenCL
program building options; Querying program objects; Creating binary
files; Offline and online compilation; SAXPY using the binary file; SPIR -
Standard Portable Intermediate Representation; Creating kernel objects
Setting kernel arguments Executing the kernels; Querying kernel
objects; Querying kernel argument; Releasing program and kernel
objects; Built-in kernels; Summary; Chapter 6: Events and
Synchronization; OpenCL events and monitoring of these events;
OpenCL event synchronization models; No synchronization needed;
Single device in-order usage; Synchronization needed; Single device
and out-of-order queue; Multiple devices and different OpenCL
contexts; Multiple devices and single OpenCL context; Coarse grained
synchronization; Event based or fine grained synchronization
Getting information about cl_event

This book follows an example-driven, simplified, and practical
approach to using OpenCL for general purpose GPU programming.If
you are a beginner in parallel programming and would like to quickly
accelerate your algorithms using OpenCL, this book is perfect for you!
You will find the diverse topics and case studies in this book interesting
and informative. You will only require a good knowledge of C
programming for this book, and an understanding of parallel
implementations will be useful, but not necessary.


