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This book follows an example-driven, simplified, and practical
approach to using OpenCL for general purpose GPU programming.If
you are a beginner in parallel programming and would like to quickly
accelerate your algorithms using OpenCL, this book is perfect for you!
You will find the diverse topics and case studies in this book interesting
and informative. You will only require a good knowledge of C
programming for this book, and an understanding of parallel
implementations will be useful, but not necessary.


