1. Record Nr.
Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione
Descrizione fisica
Collana

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNINA9910453261903321
Makkai Adam
Idiom structure in English / / by Adam Makkai

The Hague : , : Mouton, , 1972
3-11-081267-3
[Reprint 2013]

1 online resource (380 p.)

Janua Linguarum. Series Maior ; ; 48
Janua linguarum. Series maior ; ; 48

425

English language - Idioms
Stratificational grammar
Electronic books.

Inglese
Materiale a stampa
Monografia

Revised version of the author's 1965 Yale University doctoral
dissertation.

Includes bibliographical references.

Frontmatter -- PREFACE -- TABLE OF CONTENTS -- ABBREVIATIONS --

0. INTRODUCTION : SCOPE OF THE PRESENT STUDY -- PART ONE -- 1.
THEORETICAL CONSIDERATIONS -- PART TWO -- Il. A PARTIAL
CLASSIFICATION OF SOME OF THE MOST FREQUENT TYPES OF LEXEMIC
IDIOMS IN STANDARD AMERICAN ENGLISH -- APPENDIX --

BIBLIOGRAPHY -- AUTHOR INDEX -- TOPICAL INDEX



2. Record Nr. UNINA9910788070503321

Autore Suryanarayana Girish

Titolo Refactoring for software design smells : managing technical debt / /
Girish Suryanarayana, Ganesh Samarthyam, Tushar Sharma

Pubbl/distr/stampa Waltham, Massachusetts ; : , : Morgan Kaufmann, , 2015
©2015

ISBN 0-12-801646-9

Edizione [1st edition]

Descrizione fisica 1 online resource (259 p.)

Disciplina 005.1/6

Soggetti Software refactoring

Software failures

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Note generali Description based upon print version of record.

Nota di bibliografia Includes bibliographical references and index.

Nota di contenuto FrontCover; Refactoring forSoftware DesignSmells; Copyright;

Dedication; Contents; Foreword by Grady Booch; Foreword by Dr.

Stephane Ducasse; Preface; WHAT IS THIS BOOK ABOUT?; WHAT DOES
THIS BOOK COVER?; WHO SHOULD READ THIS BOOK?; WHAT ARE THE
PREREQUISITES FOR READING THIS BOOK?; HOW TO READ THIS BOOK?;
WHERE CAN | FIND MORE INFORMATION?; WHY DID WE WRITE THIS
BOOK?; Acknowledgments; Chapter 1 - Technical Debt; 1.1 WHAT IS
TECHNICAL DEBT?; 1.2 WHAT CONSTITUTES TECHNICAL DEBT?; 1.3
WHAT IS THE IMPACT OF TECHNICAL DEBT?; 1.4 WHAT CAUSES
TECHNICAL DEBT?; 1.5 HOW TO MANAGE TECHNICAL DEBT?

Chapter 2 - Design Smells2.1 WHY CARE ABOUT SMELLS?; 2.2 WHAT
CAUSES SMELLS?; 2.3 HOW TO ADDRESS SMELLS?; 2.4 WHAT SMELLS
ARE COVERED IN THIS BOOK?; 2.5 A CLASSIFICATION OF DESIGN
SMELLS; Chapter 3 - Abstraction Smells; 3.1 MISSING ABSTRACTION;

3.2 IMPERATIVE ABSTRACTION; 3.3 INCOMPLETE ABSTRACTION; 3.4
MULTIFACETED ABSTRACTION; 3.5 UNNECESSARY ABSTRACTION; 3.6
UNUTILIZED ABSTRACTION; 3.7 DUPLICATE ABSTRACTION; Chapter 4 -
Encapsulation Smells; 4.1 DEFICIENT ENCAPSULATION; 4.2 LEAKY
ENCAPSULATION; 4.3 MISSING ENCAPSULATION; 4.4 UNEXPLOITED
ENCAPSULATION; Chapter 5 - Modularization Smells

5.1 BROKEN MODULARIZATIONS.2 INSUFFICIENT MODULARIZATION; 5.3
CYCLICALLY-DEPENDENT MODULARIZATION; 5.4 HUB-LIKE



Sommario/riassunto

MODULARIZATION; Chapter 6 - Hierarchy Smells; 6.1 MISSING
HIERARCHY:; 6.2 UNNECESSARY HIERARCHY; 6.3 UNFACTORED
HIERARCHY; 6.4 WIDE HIERARCHY:; 6.5 SPECULATIVE HIERARCHY; 6.6
DEEP HIERARCHY; 6.7 REBELLIOUS HIERARCHY; 6.8 BROKEN HIERARCHY;
6.9 MULTIPATH HIERARCHY; 6.10 CYCLIC HIERARCHY; Chapter 7 - The
Smell Ecosystem; 7.1 THE ROLE OF CONTEXT; 7.2 INTERPLAY OF
SMELLS; Chapter 8 - Repaying Technical Debt in Practice; 8.1 THE

TOOLS; 8.2 THE PROCESS; 8.3 THE PEOPLE

Appendix A - Software Design PrinciplesA.1 ABSTRACTION; A.2

ACYCLIC DEPENDENCIES PRINCIPLE; A.3 DON'T REPEAT YOURSELF
PRINCIPLE; A.4 ENCAPSULATION; A.5 INFORMATION HIDING PRINCIPLE;
A.6 KEEP IT SIMPLE SILLY; A.7 LISKOV'S SUBSTITUTION PRINCIPLE; A.8
HIERARCHY; A.9 MODULARIZATION; A.10 OPEN/CLOSE PRINCIPLE; A.11
SINGLE RESPONSIBILITY PRINCIPLE; A.12 VARIATION ENCAPSULATION
PRINCIPLE; Appendix B - Tools for Repaying Technical Debt; Appendix

C - Notations for Figures; Appendix D - Suggested Reading; D.1
ESSENTIALS; D.2 REFACTORING AND REENGINEERING; D.3 PATTERNS
AND ANTI-PATTERNS

D.4 TECHNICAL DEBTBiIbliography; Index

Awareness of design smells - indicators of common design problems -
helps developers or software engineers understand mistakes made
while designing, what design principles were overlooked or misapplied,
and what principles need to be applied properly to address those
smells through refactoring. Developers and software engineers may
""know"" principles and patterns, but are not aware of the "'smells
that exist in their design because of wrong or mis-application of
principles or patterns. These smells tend to contribute heavily to
technical debt - further time owed to fix projects thought to b



