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This monograph derives direct and concrete relations between colored
Jones polynomials and the topology of incompressible spanning
surfaces in knot and link complements. Under mild diagrammatic
hypotheses, we prove that the growth of the degree of the colored
Jones polynomials is a boundary slope of an essential surface in the
knot complement. We show that certain coefficients of the polynomial
measure how far this surface is from being a fiber for the knot; in
particular, the surface is a fiber if and only if a particular coefficient
vanishes. We also relate hyperbolic volume to colored Jones
polynomials. Our method is to generalize the checkerboard
decompositions of alternating knots. Under mild diagrammatic
hypotheses, we show that these surfaces are essential, and obtain an
ideal polyhedral decomposition of their complement. We use normal
surface theory to relate the pieces of the JSJ decomposition of



the complement to the combinatorics of certain surface spines (state
graphs). Since state graphs have previously appeared in the study of
Jones polynomials, our method bridges the gap between quantum and
geometric knot invariants.



