

1. Record Nr.	UNINA9910416140603321
Autore	Lu Xianke
Titolo	Fluid Flow and Heat Transfer in Porous Media Manufactured by a Space Holder Method / / by Xianke Lu
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
ISBN	3-030-53602-5
Edizione	[1st ed. 2020.]
Descrizione fisica	1 online resource (197 pages)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053
Disciplina	620.11696
Soggetti	Chemistry Materials science Force and energy Thermodynamics Heat engineering Heat - Transmission Mass transfer Analytical chemistry Biotechnology Nanotechnology Chemistry/Food Science, general Energy Materials Engineering Thermodynamics, Heat and Mass Transfer Analytical Chemistry Nanotechnology and Microengineering
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	"Doctoral Thesis accepted by University of Liverpool, United Kingdom" -- Title page.
Nota di contenuto	Introduction -- Literature Review -- Experimental Methods -- Flow Behaviour in Porous Media -- Thermal Performance of Porous Copper -- Conclusions and Future Work.
Sommario/riassunto	This book focuses on the effects of the material, porosity, pore size and pore shape on flow behaviour and heat transfer in microscale

porous media manufactured using a space holder method. It also describes a novel approach to studying flow behaviour in non-transparent materials such as porous metals via flow visualization in transparent media that mimic the porous structure. The book employs a combination of microparticle image velocimetry – a modern, advanced technique – and pressure drop measurement – a more traditional method – that makes the mechanistic study of several phenomena possible. It covers the identification of various flow regimes and their boundaries, velocity profiles on the microscale, the heat transfer coefficient under forced convection, and the correlation between flow behaviour on the pore scale and the convective heat transfer performance of the porous media. Understanding the fundamentals of porous flow, especially on the microscale, is critical for applications of porous media in heat exchangers, catalytic convertors, chemical reactors, filtration and oil extraction. Accordingly, this book offers a valuable resource for all researchers, graduate students and engineers working in the areas of porous flow and porous materials.
