

1. Record Nr.	UNINA9910410002803321
Autore	Galego Pascual Javier
Titolo	Polaritonic Chemistry : Manipulating Molecular Structure Through Strong Light–Matter Coupling // by Javier Galego Pascual
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
ISBN	3-030-48698-2
Edizione	[1st ed. 2020.]
Descrizione fisica	1 online resource (179 pages)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053
Disciplina	540.151
Soggetti	Lasers Photonics Quantum theory Quantum optics Chemistry, Inorganic Chemistry, Organic Chemistry, Physical and theoretical Optics, Lasers, Photonics, Optical Devices Quantum Physics Quantum Optics Inorganic Chemistry Organic Chemistry Physical Chemistry
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Abstract -- List of acronyms -- Introduction -- Theoretical background -- Molecular structure in electronic strong coupling -- Theory of polaritonic chemistry -- Manipulating photochemistry -- Cavity ground-state chemistry -- General conclusions and perspective -- Bibliography -- List of publications.
Sommario/riassunto	Polaritonic chemistry is an emergent interdisciplinary field in which the strong interaction of organic molecules with confined electromagnetic field modes is exploited in order to manipulate the chemical structure

and reactions of the system. In the regime of strong light-matter coupling the interaction with the electromagnetic vacuum obliges us to redefine the concept of a molecule and consider the hybrid system as a whole. This thesis builds on the foundations of chemistry and quantum electrodynamics in order to provide a theoretical framework to describe these organic light-matter hybrids. By fully embracing the structural complexity of molecules, this theory allows us to employ long-established quantum chemistry methods to understand polaritonic chemistry. This leads to predictions of substantial structural changes in organic molecules and the possibility of significantly influencing chemical reactions both in the excited and ground states of the system.
