Record Nr.	UNINA9910383818703321
Autore	Wang Yunkun
Titolo	Development of Novel Bioelectrochemical Membrane Separation Technologies for Wastewater Treatment and Resource Recovery / / by Yunkun Wang
Pubbl/distr/stampa	Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
ISBN	981-15-3078-5
Edizione	[1st ed. 2020.]
Descrizione fisica	1 online resource (XIV, 157 p. 69 illus., 49 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	628.35
Soggetti	Environmental sciences
	Environmental engineering
	Biotechnology
	Water pollution
	Environmental chemistry
	Environmental Science and Engineering
	Environmental Engineering/Biotechnology
	/ Aquatic Pollution
	Environmental Chemistry
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Introduction Research background Intermittently aerated
	membrane bioreactor technologies for nutrients removal and
	phosphate recovery Anaerobic hybrid membrane bioreactor
	membrane bioreactor technologies for sustainable wastewater
	treatment In-situ utilization of generated electricity to mitigate
	membrane fouling In-situ utilization of generated electricity for
	nutrient recovery Conclusion acknowledgement Academic
	papers and patents during doctoral studies.
Sommario/riassunto	The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent

1.

quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the ecient wastewater treatment and energy recovery. It can potentially recover net energy from wastewater while at the same time harvesting high-quality effluent. The book also provides a proof-of-concept study showing that electrochemical control might offer a promising in-situ means of suppressing membrane fouling. Lastly, by integrating electrodialysis into EMBRs, phosphate separation and recovery are achieved. Hence, these new EMBR techniques provide viable alternatives for sustainable wastewater treatment and resource recovery.