

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Record Nr.           | UNINA9910373956803321                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Autore                  | Durakovi Benjamin                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Titolo                  | PCM-Based Building Envelope Systems : Innovative Energy Solutions for Passive Design / / by Benjamin Durakovi                                                                                                                                                                                                                                                                                                                           |
| Pubbl/distr/stampa      | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020                                                                                                                                                                                                                                                                                                                                                           |
| ISBN                    | 3-030-38335-0                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Edizione                | [1st ed. 2020.]                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Descrizione fisica      | 1 online resource (XVII, 190 p. 112 illus., 98 illus. in color.)                                                                                                                                                                                                                                                                                                                                                                        |
| Collana                 | Green Energy and Technology, , 1865-3529                                                                                                                                                                                                                                                                                                                                                                                                |
| Disciplina              | 696                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Soggetti                | Sustainable architecture<br>Thermodynamics<br>Heat engineering<br>Heat - Transmission<br>Mass transfer<br>Building construction<br>Building materials<br>Renewable energy resources<br>Sustainable Architecture/Green Buildings<br>Engineering Thermodynamics, Heat and Mass Transfer<br>Building Physics, HVAC<br>Building Materials<br>Renewable and Green Energy                                                                     |
| Lingua di pubblicazione | Inglese                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Formato                 | Materiale a stampa                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Livello bibliografico   | Monografia                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nota di contenuto       | Introduction -- Phase change materials for building envelope systems -- Passive solar heating/cooling strategies with PCM -- PCMs integrated into the building structure -- PCM-integrated glazing systems and components -- PCMs in separate heat and cold storage devices -- Heat storage and transfer mechanisms in PCM-based building envelope systems -- PCM-based building envelope system modeling and simulation -- Conclusion. |
| Sommario/riassunto      | PCM Enhanced Building Envelopes presents the latest research in the field of thermal energy storage technologies that can be applied to                                                                                                                                                                                                                                                                                                 |

solar heating and cooling with the aim of shifting and reducing building energy demand. It discusses both practical and technical issues, as well as the advantages of using common phase change materials (PCMs) in buildings as a more efficient, novel solution for passive solar heating/cooling strategies. The book includes qualitative and quantitative descriptions of the science, technology and practices of PCM-based building envelopes, and reflects recent trends by placing emphasis on energy storage solutions within building walls, floors, ceilings, façades, windows, and shading devices. With the aim of assessing buildings' energy performance, the book provides advanced modeling and simulation tools as a theoretical basis for the analysis of PCM-based building envelopes in terms of heat storage and transfer. This book will be of interest to all those dealing with building energy analysis such as researchers, academics, students and professionals in the fields of mechanical and civil engineering and architectural design.

---