1. Record Nr. UNINA990009387750403321

Autore Unione italiana di termofluidodinamica

Titolo Proceedings UIT 2011 XXIX Heat Transfer Conference: Torino, 20-22

June / Unione Italiana di Termofluidodinamica

Pubbl/distr/stampa Torino: UIT, 2011

Locazione DETEC

Collocazione 00 C3261

00 C3262

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Record Nr. UNINA9910373934503321

Autore Alase Abhijeet

Titolo Boundary Physics and Bulk-Boundary Correspondence in Topological

Phases of Matter / / by Abhijeet Alase

Pubbl/distr/stampa Cham:,: Springer International Publishing:,: Imprint: Springer,,

2019

ISBN 3-030-31960-1

Edizione [1st ed. 2019.]

Descrizione fisica 1 online resource (XVII, 200 p. 23 illus., 19 illus. in color.)

Collana Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-

5053

Disciplina 530.41

Soggetti Solid state physics

Phase transformations (Statistical physics)

Mathematical physics

Physics

Semiconductors
Solid State Physics

Phase Transitions and Multiphase Systems

Mathematical Physics

Mathematical Methods in Physics

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Nota di contenuto

Chapter1: Introduction -- Chapter2: Generalization of Bloch's theorem to systems with boundary -- Chapter3: Investigation of topological boundary states via generalized Bloch theorem -- Chapter4: Matrix factorization approach to bulk-boundary correspondence -- Chapter5: Mathematical foundations to the generalized Bloch theorem -- Chapter6: Summary and Outlook.

Sommario/riassunto

This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch's Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch's Theorem. A cornerstone of electronic band structure and transport theory in crystalline matter, Bloch's Theorem is generalized via a reformulation of the diagonalization problem in terms of corner-modified block-Toeplitz matrices and, physically, by allowing the crystal momentum to take complex values. This formulation provides exact expressions for all the energy eigenvalues and eigenstates of the single-particle Hamiltonian. By precisely capturing the interplay between bulk and boundary properties, this affords an exact analysis of several prototypical models relevant to symmetry-protected topological phases of matter, including a characterization of zero-energy localized boundary excitations in both topological insulators and superconductors. Notably, in combination with suitable matrix factorization techniques, the generalized Bloch Hamiltonian is also shown to provide a natural starting point for a unified derivation of bulk-boundary correspondence for all symmetry classes in one dimension.