1. Record Nr.

Autore
Titolo
Pubbl/distr/stampa

ISBN

Edizione

Descrizione fisica
Disciplina

Soggetti

Lingua di pubblicazione
Formato
Livello bibliografico

Nota di contenuto

Sommario/riassunto

UNINA9910373923103321
Rosenberg Doug

Parallel Agile — faster delivery, fewer defects, lower cost / / by Doug
Rosenberg, Barry Boehm, Matt Stephens, Charles Suscheck, Shobha Rani
Dhalipathi, Bo Wang

Cham :, : Springer International Publishing : , : Imprint : Springer, ,

2020

3-030-30701-8
[1st ed. 2020.]
1 online resource (XIX, 221 p. 120 illus.)

005.1
005.1112

Software engineering

Management information systems

Computer science

Software Engineering/Programming and Operating Systems
Management of Computing and Information Systems

Inglese
Materiale a stampa
Monografia

1. Parallel Agile Concepts -- 2. Inside Parallel Agile -- 3. CodeBots:
From Domain Model to Executable Architecture -- 4. Parallel Agile by
Example: CarmaCam -- 5. Taking the Scream Out of Scrum -- 6. Test
Early, Test Often -- 7. Managing Parallelism: Faster Delivery, Fewer
Defects, Lower Cost -- 8. Large-Scale Parallel Development -- 9.
Parallel Agile for Machine Learning -- Appendix A. The Scream Guide
-- Appendix B. Architecture Blueprints.

From the beginning of software time, people have wondered why it isn’

t possible to accelerate software projects by simply adding staff. This is
sometimes known as the “nine women can’t make a baby in one

month” problem. The most famous treatise declaring this to be
impossible is Fred Brooks’ 1975 book The Mythical Man-Month, in

which he declares that “adding more programmers to a late software
project makes it later,” and indeed this has proven largely true over the
decades. Aided by a domain-driven code generator that quickly creates
database and API code, Parallel Agile (PA) achieves significant schedule



compression using parallelism: as many developers as necessary can
independently and concurrently develop the scenarios from initial
prototype through production code. Projects can scale by elastic
staffing, rather than by stretching schedules for larger development
efforts. Schedule compression with a large team of developers working
in parallel is analogous to hardware acceleration of compute problems
using parallel CPUs. PA has some similarities with and differences from
other Agile approaches. Like most Agile methods, PA "gets to code
early" and uses feedback from executable software to drive
requirements and design. PA uses technical prototyping as a risk-
mitigation strategy, to help sanity-check requirements for feasibility,
and to evaluate different technical architectures and technologies.
Unlike many Agile methods, PA does not support "design by
refactoring,” and it doesn't drive designs from unit tests. Instead, PA
uses a minimalist UML-based design approach (Agile/ICONIX) that
starts out with a domain model to facilitate communication across the
development team, and partitions the system along use case
boundaries, which enables parallel development. Parallel Agile is fully
compatible with the Incremental Commitment Spiral Model (ICSM),
which involves concurrent effort of a systems engineering team, a
development team, and a test team working alongside the developers.
The authors have been researching and refining the PA process for
several years on multiple test projects that have involved over 200
developers. The book’s example project details the design of one of
these test projects, a crowdsourced traffic safety system.



