Record Nr. UNINA9910366603603321 Autore **Agrawal Amit** Titolo Microscale Flow and Heat Transfer: Mathematical Modelling and Flow Physics / / by Amit Agrawal, Hari Mohan Kushwaha, Ravi Sudam Jadhav Cham:,: Springer International Publishing:,: Imprint: Springer,, Pubbl/distr/stampa 2020 **ISBN** 3-030-10662-4 Edizione [1st ed. 2020.] Descrizione fisica 1 online resource (375 pages) Collana Mechanical Engineering Series, , 0941-5122 621.4022 Disciplina 532.05 Soggetti Thermodynamics Heat engineering Heat - Transmission Mass transfer Fluid mechanics Nanotechnology Engineering Thermodynamics, Heat and Mass Transfer **Engineering Fluid Dynamics** Nanotechnology and Microengineering Lingua di pubblicazione Inglese **Formato** Materiale a stampa Livello bibliografico Monografia Nota di bibliografia Includes bibliographical references and index. Nota di contenuto Chapter1: Introduction to Microscale Flows and Mathematical Modelling -- Chapter2: Microscale Flows -- Chapter3: Microscale Heat Transfer -- Chapter4: Need for looking Beyond the Navier-Stokes Equations --Chapter5: Burnett Equations: Derivation and Analysis -- Chapter6: Grad Equations: Derivation and Analysis -- Chapter7: Alternate forms of Burnett and Grad equations -- Chapter8: Overview to Numerical and Experimental Techniques -- Chapter9: Summary and Future Research Directions. Sommario/riassunto This book covers concepts and the latest developments on microscale flow and heat transfer phenomena involving a gas. The book is organised in two parts: the first part focuses on the fluid flow and heat transfer characteristics of gaseous slip flows. The second part presents

modelling of such flows using higher-order continuum transport

equations. The Navier-Stokes equations based solution is provided to various problems in the slip regime. Several interesting characteristics of slip flows along with useful empirical correlations are documented in the first part of the book. The examples bring out the failure of the conventional equations to adequately describe various phenomena at the microscale. Thereby the readers are introduced to higher order continuum transport (Burnett and Grad) equations, which can potentially overcome these limitations. A clear and easy to follow step by step derivation of the Burnett and Grad equations (superset of the Navier-Stokes equations) is provided in the second part of the book. Analytical solution of these equations, the latest developments in the field, along with scope for future work in this area are also brought out. Presents characteristics of flow in the slip and transition regimes for a clear understanding of microscale flow problems; Provides a derivation of Navier-Stokes equations from microscopic viewpoint; Features a clear and easy to follow step-by-step approach to derive Burnett and Grad equations; Describes a complete compilation of few known exact solutions of the Burnett and Grad equations, along with a discussion of the solution aided with plots; Introduces the variants of the Navier-Stokes, Burnett and Grad equations, including the recently proposed Onsager-Burnett and O13 moment equations.