1. Record Nr.

Autore
Titolo

Ouyang Liliang
Study on Microextrusion-based 3D Bioprinting and Bioink Crosslinking Mechanisms [[electronic resource] /] / by Liliang Ouyang

Pubbl/distr/stampa	Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
ISBN	$981-13-9455-5$
Edizione	[1st ed. 2019.]
Descrizione fisica	1 online resource (141 pages)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190
	5053

Disciplina 621.988

Soggetti	Biomaterials
	Manufactures
	Polymers
	Biotechnology
	Manufacturing, Machines, Tools, Processes
	Polymer Sciences

Lingua di pubblicazione Inglese

Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Introduction -- General criteria for bioprinting process and bioinks Bioprinting of shear-thinning bioink -- Bioprinting of thermo-sensitive bioink -- Bioprinting of non-viscous photo-crosslinkable bioink Biological studies and characterization -- Conclusion.
This book presents a comprehensive study on microextrusion-based	
	3D bioprinting technologies for bioinks with various crosslinking
mechanisms, chiefly focusing on the bioprinting process and bioink	
properties to provide readers with a better understanding of this state-	
of-the-art technology. Further, it summarizes a number of general	
criteria and research routes for microextrusion-based 3D bioprinting	
using three experimental studies based on shear-thinning, thermo-	
sensitive and non-viscous hydrogel bioinks. The book also presents	
sample applications in the areas of stem cells and cell matrix	
interaction. The book highlights pioneering results in the development	
of bioprinting technologies and bioinks, which were published in high-	
quality journals such as Advanced Materials, Biofabrication and ACS	
Biomaterials Science \& Engineering. These include an in-situ	

crosslinking strategy that overcomes the viscosity limits for bioinks, which is virtually impossible using conventional strategies, and can be generalized for other bioink formulations.

