Record Nr.	UNINA9910349519003321
Autore	Civiš Svatopluk
Titolo	The Chemistry of CO2 and TiO2 : From Breathing Minerals to Life on Mars / / by Svatopluk Civiš, Martin Ferus, Antonín Knížek
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
ISBN	3-030-24032-0
Edizione	[1st ed. 2019.]
Descrizione fisica	1 online resource (108 pages)
Collana	SpringerBriefs in Molecular Science, , 2191-5407
Disciplina	546.6812 546.681
Soggetti	Catalysis Surfaces (Physics) Interfaces (Physical sciences) Thin films Atmospheric sciences Astrobiology Spectroscopy Planetary science Surface and Interface Science, Thin Films Atmospheric Sciences Spectroscopy/Spectrometry Planetary Sciences
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Chapter 1 - Carbon dioxide and the effects on climate Chapter 2 - Oxygen atoms exchange between carbon dioxide and TiO2 Chapter 3 - Photocatalytic Transformation of CO2 to CH4 Chapter 4 - Additional views on Origin of life molecules Chapter 5 - Applications of the CO2 photocatalytic reduction Chapter 6 - Conclusion.
Sommario/riassunto	This book provides a comprehensive overview of the chemistry of CO2 in relation to surface interactions and photocatalytic transformation by UV radiation. The first part deals with the modelling of an anatase surface, its interaction with CO2, and the spontaneous exchange of

oxygen atoms between the gas and solid phases. The book then naturally transitions to the photocatalytic reduction of CO2, achieved by adding UV radiation and traces of water to the experimental system, to produce methane and CO. This photocatalytic reduction is explained in detail and the implications for planetary chemistry (specifically concerning Mars), as well as Earth's atmospheric chemistry and global warming, are discussed.