Record Nr.	UNINA9910349507003321
Autore	Sunko Veronika
Titolo	Angle Resolved Photoemission Spectroscopy of Delafossite Metals [[electronic resource] /] / by Veronika Sunko
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
ISBN	3-030-31087-6
Edizione	[1st ed. 2019.]
Descrizione fisica	1 online resource (XVII, 198 p. 122 illus., 104 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	530.41
Soggetti	Solid state physics Spectroscopy Microscopy Materials—Surfaces Thin films Solid State Physics Spectroscopy and Microscopy Surfaces and Interfaces, Thin Films Spectroscopy/Spectrometry
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Doctoral thesis accepted by the Max Planck Institute for chemical physics of solids, Dresden, Germany.
Nota di contenuto	Introduction Angle Resolved Photoemission Theory and Models Bulk States in PtCoO2 and PdCoO2 Coupling of Metallic and Mott-insulating states in PdCrO2 Rashba-like Spin-Split Surface States Conclusions and Outlook Appendices.
Sommario/riassunto	This thesis describes the results of angle resolved photoemission spectroscopy experiments on delafossite oxide metals, and theoretical work explaining these observations. The study was motivated by the extraordinarily high conductivity of the non-magnetic delafossites PdCoO2 and PtCoO2, the measurement of whose electronic structure is reported and discussed. Two unexpected effects were observed in the course of the investigation; each is described and analysed in detail. Firstly, a previously unrecognised type of spectroscopic signal, allowing

1.

the non-magnetic probe of photoemission to become sensitive to spinspin correlations, was observed in the antiferromagnetic PdCrO2. Its origin was identified as the Kondo-like coupling of itinerant and Mott insulating electrons. Furthermore, surface states exhibiting an unusually large Rashba-like spin-splitting were observed on the transition metal terminated surfaces of delafossites. The large inversion symmetry breaking energy scale, a consequence of the unusual structure of the surface layer, is identified as the origin of the effect.