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The Pacific Symposium on Biocomputing (PSB) 2019 is an international,
multidisciplinary conference for the presentation and discussion of
current research in the theory and application of computational
methods in problems of biological significance. Presentations are
rigorously peer reviewed and are published in an archival proceedings
volume. PSB 2019 will be held on January 3 – 7, 2019 in Kohala Coast,
Hawaii. Tutorials and workshops will be offered prior to the start of the
conference. PSB 2019 will bring together top researchers from the US,
the Asian Pacific nations, and around the world to exchange research
results and address open issues in all aspects of computational biology.
It is a forum for the presentation of work in databases, algorithms,
interfaces, visualization, modeling, and other computational methods,
as applied to biological problems, with emphasis on applications in
data-rich areas of molecular biology. The PSB has been designed to be
responsive to the need for critical mass in sub-disciplines within
biocomputing. For that reason, it is the only meeting whose sessions
are defined dynamically each year in response to specific proposals.
PSB sessions are organized by leaders of research in biocomputing's
"hot topics." In this way, the meeting provides an early forum for
serious examination of emerging methods and approaches in this
rapidly changing field.


