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This book lays out the theory of Mordell–Weil lattices, a very powerful
and influential tool at the crossroads of algebraic geometry and
number theory, which offers many fruitful connections to other areas of
mathematics. The book presents all the ingredients entering into the
theory of Mordell–Weil lattices in detail, notably, relevant portions of
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lattice theory, elliptic curves, and algebraic surfaces. After defining
Mordell–Weil lattices, the authors provide several applications in depth.
They start with the classification of rational elliptic surfaces. Then a
useful connection with Galois representations is discussed. By
developing the notion of excellent families, the authors are able to
design many Galois representations with given Galois groups such as
the Weyl groups of E6, E7 and E8. They also explain a connection to the
classical topic of the 27 lines on a cubic surface. Two chapters deal
with elliptic K3 surfaces, a pulsating area of recent research activity
which highlights many central properties of Mordell–Weil lattices.
Finally, the book turns to the rank problem—one of the key motivations
for the introduction of Mordell–Weil lattices. The authors present the
state of the art of the rank problem for elliptic curves both over Q and
over C(t) and work out applications to the sphere packing problem.
Throughout, the book includes many instructive examples illustrating
the theory.


