	UNINA9910349275203321
Titolo	Artificial Intelligence in Radiation Therapy : First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Dan Nguyen, Lei Xing, Steve Jiang
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
ISBN	3-030-32486-9
Edizione	[1st ed. 2019.]
Descrizione fisica	1 online resource (XI, 172 p. 87 illus., 74 illus. in color.)
Collana	Image Processing, Computer Vision, Pattern Recognition, and Graphics ; ; 11850
Disciplina	610.28563
Soggetti	Optical data processing Artificial intelligence Health informatics Image Processing and Computer Vision Artificial Intelligence Health Informatics
Lingua di pubblicazione	Inglese
Lingua di pubblicazione Formato	Inglese Materiale a stampa
Lingua di pubblicazione Formato Livello bibliografico	Inglese Materiale a stampa Monografia
Lingua di pubblicazione Formato Livello bibliografico Note generali	Inglese Materiale a stampa Monografia Includes index.

1.

	and Prediction From an Interlaced Slice Acquisition - A Manifold Embedding and Learning Approach One-dimensional convolutional network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning Unpaired Synthetic Image Generation in Radiology Using GANs Deriving lung perfusion directly from CT image using deep convolutional neural network: A preliminary study Individualized 3D Dose Distribution Prediction Using Deep Learning Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy Dose Distribution Prediction for Optimal Treatment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR- Guided Radiotherapy UC-GAN for MR to CT Image Synthesis CBCT-based Synthetic MRI Generation for CBCT-guided Adaptive Radiotherapy Cardio-pulmonary Substructure Segmentation of CT images using Convolutional Neural Networks.
Sommario/riassunto	This book constitutes the refereed proceedings of the First International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019. The 20 full papers presented were carefully reviewed and selected from 24 submissions. The papers discuss the state of radiation therapy, the state of AI and related technologies, and hope to find a pathway to revolutionizing the field to ultimately improve cancer patient outcome and quality of life.