1.	Record Nr.	UNINA9910349274103321
	Titolo	Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI / / edited by Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan
	Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
	ISBN	3-030-32226-2
	Edizione	[1st ed. 2019.]
	Descrizione fisica	1 online resource (XXXVIII, 860 p. 476 illus., 308 illus. in color.)
	Collana	Image Processing, Computer Vision, Pattern Recognition, and Graphics ; ; 11769
	Disciplina	616.07540285 616.0757
	Soggetti	Optical data processing Pattern recognition Artificial intelligence Health informatics Image Processing and Computer Vision Pattern Recognition Artificial Intelligence Health Informatics
	Lingua di pubblicazione	Inglese
	Formato	Materiale a stampa
	Livello bibliografico	Monografia
	Nota di bibliografia	Includes bibliographical references and index.
	Nota di contenuto	Computed Tomography Multi-Scale Coarse-to-Fine Segmentation for Screening Pancreatic Ductal Adenocarcinoma MVP-Net: Multi- view FPN with Position-aware Attention for Deep Universal Lesion Detection Spatial-Frequency Non-Local Convolutional LSTM Network for pRCC classification BCD-Net for Low-dose CT Reconstruction: Acceleration, Convergence, and Generalization Abdominal Adipose Tissue Segmentation in MRI with Double Loss Function Collaborative Learning Closing the Gap between Deep and Conventional Image Registration using Probabilistic Dense Displacement Networks Generating Pareto optimal dose distributions for radiation therapy

treatment planning -- PAN: Projective Adversarial Network for Medical Image Segmentation -- Generative Mask Pyramid Network for CT/CBCT Metal Artifact Reduction with Joint Projection-Sinogram Correction --Multi-Class Gradient Harmonized Dice Loss with Application to Knee MR Image Segmentation -- LSRC: A Long-Short Range Context-Fusing Framework for Automatic 3D Vertebra Localization -- Contextual Deep Regression Network for Volume Estimation in Orbital CT -- Multi-scale GANs for Memory-efficient Generation of High Resolution Medical Images -- Deep Learning based Metal Artifacts Reduction in postoperative Cochlear Implant CT Imaging -- ImHistNet: Learnable Image Histogram Based DNN with Application to Noninvasive Determination of Carcinoma Grades in CT Scans -- DPA-DenseBiasNet: Semi-supervised 3D Fine Renal Artery Segmentation with Dense Biased Network and Deep Priori Anatomy -- Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior -- Pairwise Semantic Segmentation via Conjugate Fully Convolutional Network --Unsupervised Deformable Image Registration Using Cycle-Consistent CNN -- Volumetric Attention for 3D Medical Image Segmentation and Detection -- Improving Deep Lesion Detection Using 3D Contextual and Spatial Attention -- MULAN: Multitask Universal Lesion Analysis Network for Joint Lesion Detection, Tagging, and Segmentation --Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction -- AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks --Integrating cross-modality hallucinated MRI with CT to aid mediastinal lung tumor segmentation -- Bronchus Segmentation and Classification by Neural Networks and Linear Programming -- Unsupervised Segmentation of Micro-CT Images of Lung Cancer Specimen Using Deep Generative Models -- Normal appearance autoencoder for lung cancer detection and segmentation -- mIVIRNET: Multilevel Variational Image Registration Network -- NoduleNet: Decoupled False Positive Reduction for Pulmonary Nodule Detection and Segmentation --Encoding CT Anatomy Knowledge for Unpaired Chest X-ray Image Decomposition -- Targeting Precision with Data Augmented Samples in Deep Learning -- Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest CT Images -- Attentive CT Lesion Detection Using Deep Pyramid Inference with Multi-Scale Booster -- Deep Variational Networks with Exponential Weighting for Learning Computed Tomography -- R2-Net: Recurrent and Recursive Network for Sparse-view CT Artifacts Removal -- Stereo-Correlation and Noise-Distribution Aware ResVoxGAN for Dense Slices Reconstruction and Noise Reduction in Thick Low-Dose CT -- Harnessing 2D Networks and 3D Features for Automated Pancreas Segmentation from Volumetric CT Images -- Tubular Structure Segmentation Using Spatial Fully Connected Network With Radial Distance Loss for 3D Medical Images --Bronchial Cartilage Assessment with Model-Based GAN Regressor --Adversarial optimization for joint registration and segmentation in prostate CT radiotherapy -- Probabilistic Point Cloud Reconstructions for Vertebral Shape Analysis -- Automatically Localizing a Large Set of Spatially Correlated Key Points: A Case Study in Spine Imaging --Permutohedral Attention Module for Efficient Non-Local Neural Networks -- Improving RetinaNet for CT Lesion Detection with Dense Masks from Weak RECIST Labels -- X-ray Imaging -- PRSNet: Part Relation and Selection Network for Bone Age Assessment -- Mask Embedding for Realistic High-resolution Medical Image Synthesis --TUNA-Net: Task-oriented UNsupervised Adversarial Network for Disease Recognition in Cross-Domain Chest X-rays -- Misshapen Pelvis Landmark Detection by Spatial Local Correlation Mining for Diagnosing

Developmental Dysplasia of the Hip -- Adversarial Policy Gradient for Deep Learning Image Augmentation -- Weakly Supervised ROI Mining Toward Universal Fracture Detection in Pelvic X-ray -- Learning from Suspected Target: Bootstrapping Performance for Breast Cancer Detection in Mammography -- From Unilateral to Bilateral Learning: Detecting Mammogram Mass with Contrasted Bilateral Network --Signed Laplacian Deep Learning with Adversarial Augmentation for Improved Mammography Diagnosis -- Uncertainty measurements for the reliable classification of mammograms -- GraphX\$^{NET}-\$ Chest X-Ray Classification Under Extreme Minimal Supervision -- 3DFPN-HS2: 3D Feature Pyramid Network Based High Sensitivity and Specificity Pulmonary Nodule Detection -- Automated detection and type classification of central venous catheters in chest X-rays -- A Comprehensive Framework for Accurate Classification of Pulmonary Nodules -- Hand Pose Estimation for Pediatric Bone Age Assessment --An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms -- Learning-based X-ray Image Denoising utilizing Model-based Image Simulations -- LVC-Net: Medical image segmentation with noisy label based on Local Visual Cues --Unsupervised Cone-Beam Computed Tomography (CBCT) segmentation based on adversarial learning domain adaptation -- Pick-and-Learn: Automatic Quality Evaluation for Noisy-Labeled Image Segmentation --Anatomical Priors for Image Segmentation via Post-Processing with Denoising Autoencoders -- Simultaneous Lung Field Detection and Segmentation for Pediatric ChestRadiographs -- Deep Esophageal Clinical Target Volume Delineation using Encoded 3D Spatial Context of Tumor, Lymph Nodes, and Organs At Risk -- Weakly Supervised Segmentation Framework with Uncertainty: A Study on Pneumothorax Segmentation in Chest X-ray -- Multi-task Localization and Segmentation for X-ray Guided Planning in Knee Surgery -- Towards fully automatic X-ray to CT registration -- Adaptive image-feature learning for disease classification using inductive graph networks --How to learn from unlabeled volume data: Self-Supervised 3D Context Feature Learning -- Probabilistic Radiomics: Ambiguous Diagnosis with Controllable Shape Analysis -- Extract Bone Parts without Human Prior: End-to-end Convolutional Neural Network for Pediatric Bone Age Assessment -- Quantifying and Leveraging Classification Uncertainty for Chest Radiograph Assessment -- Adversarial regression training for visualizing the progression of chronic obstructive pulmonary disease with chest x-rays -- Medical-based Deep Curriculum Learning for Improved Fracture Classification -- Realistic Breast Mass Generation through BIRADS Category -- Learning from Longitudinal Mammography Studies -- Automated Radiology Report Generation via Multi-view Image Fusion and Medical Concept Enrichment -- Multi-label Thoracic Disease Image Classification with Cross-attention Networks --InfoMask: Masked Variational Latent Representation to Localize Chest Disease -- Longitudinal Change Detection on Chest X-rays using Geometric Correlation Maps -- Adversarial Pulmonary Pathology Translation for Pairwise Chest X-ray Data Augmentation -- Semi-Supervised Learning by Disentangling and Self-Ensembling over Stochastic Latent Space -- An Automated Cobb Angle Estimation Method Using Convolutional Neural Network with Area Limitation --Endotracheal Tube Detection and Segmentation in Chest Radiographs using Synthetic Data -- Learning Interpretable Features via Adversarially Robust Optimization -- Synthesize Mammogram from Digital Breast Tomosynthesis with Gradient Guided cGANs -- Semisupervised Medical Image Segmentation via Learning Consistency under Transformations -- Improved Inference via Deep Input Transfer --

	Neural Architecture Search for Adversarial Medical Image Segmentation MeshSNet: Deep Multi-Scale Mesh Feature Learning for End-to-End Tooth Labeling on 3D Dental Surfaces Improving Robustness of Medical Image Diagnosis with Denoising Convolutional Neural Networks.
Sommario/riassunto	The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy. Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression. Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging. Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis. Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.