

1. Record Nr.	UNINA9910346721803321
Autore	Alloatti Luca
Titolo	High-Speed, Low-Power and Mid-IR Silicon Photonics Applications
Pubbl/distr/stampa	KIT Scientific Publishing, 2013
ISBN	1000035591
Descrizione fisica	1 online resource (X, 92 p. p.)
Collana	Karlsruhe Series in Photonics and Communications / Karlsruhe Institute of Technology, Institute of Photonics and Quantum Electronics (IPQ)
Soggetti	Technology: general issues
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Sommario/riassunto	<p>In this book, the first high-speed silicon-organic hybrid (SOH) modulator is demonstrated by exploiting a highly-nonlinear polymer cladding and a silicon waveguide. By using a liquid crystal cladding instead, an ultra-low power phase shifter is obtained. A third type of device is proposed for achieving three-wave mixing on the silicon-organic hybrid (SOH) platform. Finally, new physical constants which describe the optical absorption in charge accumulation/inversion layers in silicon are determined.</p>