1.	Record Nr.	UNINA9910346664303321
	Autore	Li Qiliang
	Titolo	Nanoelectronic Materials, Devices and Modeling
	Pubbl/distr/stampa	MDPI - Multidisciplinary Digital Publishing Institute, 2019
	ISBN	3-03921-226-5
	Descrizione fisica	1 electronic resource (242 p.)

Lingua di pubblicazione	Inglese Materiale a stampa
Formato	
Livello bibliografico	Monografia
Sommario/riassunto	As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry.