•	Record Nr. Autore	UNINA9910337930103321 Bregnhøj Mikkel The Electronic Transitions of Melecular Owygen / (by Mikkel Bregnhoi
	Titolo Pubbl/distr/stampa	The Electronic Transitions of Molecular Oxygen / / by Mikkel Bregnhøj Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
	ISBN	3-030-03183-7
	Edizione	[1st ed. 2019.]
	Descrizione fisica	1 online resource (xx, 128 pages)
	Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
	Disciplina	546.72159
	Soggetti	Physical chemistry Atomic structure Molecular structure Nanochemistry Biophysics Biological physics Physical Chemistry Atomic/Molecular Structure and Spectra Biological and Medical Physics, Biophysics
	Lingua di pubblicazione	Inglese
	Formato	Materiale a stampa
	Livello bibliografico	Monografia
	Nota di contenuto	Introduction Instrumentation and Experimental Techniques Direct O2(X3g) à O2(b1g+) excitation Solvent Effects on the O2(a1g) à O2(b1g+) transition Temperature Effects on the lifetime of O2 (a1g) Metal-Enhanced Singlet Oxygen Production Concluding Remarks.
	Sommario/riassunto	This book presents the fundamentals and the state of the art of the photophysics of molecular oxygen. The author examines optical transitions between the lowest-lying electronic states in molecular oxygen and how these transitions respond to perturbation, either from an organic molecule or from the plasmon field of a metal nanoparticle. We live on a planet filled with light and oxygen. The interaction between these two components forms the basis of excited state chemistry spanning the fields of synthetic organic chemistry, materials chemistry, molecular biology, and photodynamic treatment of cancer.

Still, the fundamental ways in which oxygen is affected by light is an active subject of research and is continually being developed and rationalized. In this book, readers will learn that singlet oxygen, the excited state of oxygen that exhibits unique chemical reactivity, can be selectively made via direct optical excitation of oxygen in a sensitizer-free system. Readers will also discover that this approach can perturb living cells differently depending on the singlet oxygen "dose".