UNINA9910337468103321
Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5 : Proceedings of the 2018 Annual Conference on Experimental and
Applied Mechanics / / edited by Piyush R. Thakre, Raman P. Singh, Geoffrey Slipher
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
3-319-95510-1
[1st ed. 2019.]
1 online resource (334 pages)
Conference Proceedings of the Society for Experimental Mechanics Series, , 2191-5652
620.11892
Mechanics, Applied
Solids
Ceramic materials
Materials - Analysis
Solid Mechanics Ceramics
Characterization and Analytical Technique
Inglese
Materiale a stampa
Monografia
Intro Preface Contents 1 Stimulus-Responsive Interfacial Chemistry in CNT/Polymer Nanocomposites 1.1 Introduction 1.2 Experimental Methods 1.2.1 Functionalization of CNT Films 1.2.2 Fabrication and UV Treatment of Layered Composites 1.2.3 Experimental Characterization 1.3 Results and Discussion 1.3.1 Characterization of CNT Functionalization 1.3.2 Photoreaction of Benzophenone 1.3.3 Mechanical Behavior of CNT/PDMS Nanocomposites 1.4 Conclusion References 2 Devulcanized Rubber Based Composite Design Reinforced with Nano Silica, Graphene Nano Platelets (GnPs) and Epoxy for "Aircraft Wing Spar" to Withstand Bending Moment 2.1 Introduction 2.2 Experimental Conditions 2.2.1 Materials Processing 2.2.2 Mechanical, Microstructure, Fracture Surface Analyses and Shore-D Hardness Measurements

1.

2.2.3 Wear Resistance (Scratch Test) and Damage Analysis Via 3D Optical Roughness Meter -- 2.3 Results and Discussions -- 2.3.1 Microstructural Evaluation of the Composites -- 2.3.2 Three Point Bending Tests and Fracture Surface Observation -- 2.3.3 Drop Weight Testing -- 2.3.4 Damage Analysis by Means of Micro Scratch Test and 3D Optical Surface Roughness Meter -- 2.3.5 Numerical Approach for These Composites -- 2.4 Conclusion -- References -- 3 Study of Mechanical Characteristics of Banana and Jute Fiber Reinforced Polyester Composites -- 3.1 Introduction -- 3.2 Materials and Methodology -- 3.2.1 Materials -- 3.2.2 Methodology -- 3.3 Results and Discussions -- 3.3.1 Tensile Strength Test -- 3.3.2 Flexural Strength Test -- 3.4 Conclusions -- References -- 4 Toughening Mechanism in Epoxy Resin Modified Recycled Rubber Based Composites Reinforced with Gamma-Alumina, Graphene and CNT -- 4.1 Introduction -- 4.2 Experimental Conditions -- 4.2.1 Materials Processing.

4.2.2 Microstructure: Fracture Surface Analyses and Shore-D Hardness Measurements -- 4.2.3 Wear Resistance (Scratch Test) and Damage Analysis Via 3D Optical Roughness Meter -- 4.3 Results and Discussions -- 4.3.1 Microstructure of the Composites -- 4.3.2 Three Point Bending Tests and Fracture Surface Observation -- 4.3.2.1 Flexural Testing and Fracture Toughness Determination -- 4.3.3 Charpy Impact Testing -- 4.3.4 Damage Analysis by Means of Scratch Test and 3d Optical Roughness Meter -- 4.4 Conclusion -- References -- 5 AlSi10Mg Nanocomposites Prepared by DMLS Using In-Situ CVD Growth of CNTs: Process Effects and Mechanical Characterization --5.1 Introduction -- 5.2 Experimental Procedure -- 5.2.1 CVD Growth of CNTs on AlSi10Mg Powders -- 5.2.2 DMLS of Specimens and Heat Treatment -- 5.2.3 Tensile Experiments -- 5.3 Results and Discussion -- 5.3.1 Tensile Test Results -- 5.3.2 SEM Analysis of Failure Surface -- 5.4 Conclusion -- References -- 6 Optimization of Surface Integrity of Titanium-Aluminum Intermetallic Composite Machined by Wire EDM -- 6.1 Introduction -- 6.2 Experimental Procedure -- 6.2.1 Equipment, Materials and Measurement -- 6.2.2 Wire Electric Discharge Machining Process and Cutting Parameters -- 6.2.3 Influence of Cutting Parameters on the Surface Roughness -- 6.3 Statistical Analysis -- 6.4 Conclusion -- References -- 7 Design of Cost Effective Epoxy + Scrap Rubber Based Composites Reinforced with Titanium Dioxide and Alumina Fibers -- 7.1 Introduction -- 7.2 Experimental Conditions --7.2.1 Materials Processing -- 7.2.2 Experimental Procedure -- 7.3 Results and Discussions -- 7.3.1 Microstructure of the Composites --7.3.2 Three Point Bending Tests and Fracture Surface Observation --7.3.3 Time Dependent Behaviour by Means of NanoIndentation -- 7.3.4 Wear Testing by Nanoindentation -- 7.4 Conclusions -- References. 8 Reinforcement of Recycled Rubber Based Composite with Nano-Silica and Graphene Hybrid Fillers -- 8.1 Introduction -- 8.2 Experimental Conditions -- 8.2.1 Materials Processing -- 8.2.2 Microstructure: Fracture Surface Analyses and Shore-D Hardness Measurements --8.2.3 Wear Resistance (Scratch Test) and Damage Analysis via 3D Optical Roughness Meter -- 8.3 Results and Discussions -- 8.3.1 Microstructure of the Composites -- 8.3.2 Three Point Bending Tests and Fracture Surface Observation -- 8.3.2.1 Flexural Testing and Fracture Toughness Determination -- 8.3.3 Charpy Impact Testing --8.3.4 Damage Analysis by Means of Scratch Test and 3d Optical Roughness Meter -- 8.4 Conclusion -- References -- 9 Testing the 2-3 Shear Strength of Unidirectional Composite -- 9.1 Introduction -- 9.2 Experimental Methodology -- 9.3 Results -- 9.4 Analysis & Discussion -- 9.5 Conclusions -- References -- 10 Nondestructive Damage

Detection of a Magentostricive Composite Structure -- 10.1 Introduction -- 10.2 Preliminary Results -- 10.3 Conclusion --References -- 11 Thermo-Mechanical Properties of Thermoset Polymers and Composites Fabricated by Frontal Polymerization --References -- 12 Design of Magnetic Aluminium (AA356) Composites (AMCs) Reinforced with Nano Fe3O4, and Recycled Nickel: Copper Particles -- 12.1 Introduction -- 12.2 Experimental Conditions -- 12.3 Results and Discussion -- 12.3.1 Microstructural Evaluation of the Composites -- 12.3.2 Evaluation of Magnetic Properties for A356-I, II, III, IV -- 12.3.3 Static Compression Test Results and Micro Hardness Measurements -- 12.3.4 Wear Resistance by Scratch Test -- 12.4 Conclusions -- References -- 13 Reinforcement Effect of Nano Fe3O4 and Nb2AI on the Mechanical and Physical Properties of Cu-AI Based Composites -- 13.1 Introduction -- 13.2 Experimental Conditions --13.3 Results and Discussion.

13.3.1 Microstructure and Mapping Analyses of the Compositions Produced by "Sinter+ Forging Process -- 13.3.2 Macro Wear (Scratch Test) Results -- 13.3.3 Nano Wear Testing Results Obtained by Nanoindentation -- 13.3.4 Static Compression Test Results and Micro Hardness Measurements -- 13.4 Evaluation of Magnetic Properties for CAF2 Produced with "Sinter + Forging" Process -- 13.5 Conclusions --References -- 14 Recycled Ti-17 Based Composite Design --Optimization Process Parameters in Wire Cut Electrical Discharge Machining (WEDM) -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.2.1 Equipment, Materials and Measurement -- 14.2.2 Wire Electric Discharge Machining Process and Cutting Parameters --14.2.3 Influence of Machining Parameters on Performance of WEDM Process -- 14.2.3.1 Influence of Machining Parameters on Kerf Width -- 14.2.3.2 Influence of Machining Parameters on Material Removal Rate MRR -- 14.3 Statistical Analysis -- 14.4 Conclusions --References -- 15 Alternative Composite Design from Recycled Aluminum Chips for Mechanical Pin-Joint (Knuckle) Applications --15.1 Introduction -- 15.2 Experimental Conditions -- 15.2.1 Materials Processing -- 15.3 Results and Discussions -- 15.3.1 Microstructure and Mapping Analyses of the Three Compositions Produced by "Sintering" and "Sinter+ Forging Process" -- 15.3.2 Mapping Analyses of the Three Compositions Produced by Sinter+ Forging Process --15.3.3 Static Compression Test Results -- 15.3.4 Low Velocity or Dynamic Compression (Drop Weight) Test Results -- 15.3.5 Wear (Scratch) Test Results -- 15.4 Conclusions -- References -- 16 Manufacturing of Copper Based Composites Reinforced with Ceramics and Hard Intermetallics for Applications of Electric Motor Repair Parts -- 16.1 Introduction -- 16.2 Experimental Conditions -- 16.3 Results and Discussions.

16.3.1 Microstructure and Mapping Analyses of the Compositions Produced by "Sinter + Forging Process" -- 16.3.2 Wear (Scratch) Test Results -- 16.4 Conclusion -- References -- 17 Damping and Toughening Effect of the Reinforcements on the Epoxy Modified Recycled + Devulcanized Rubber Based Composites -- 17.1 Introduction -- 17.2 Experimental Conditions -- 17.2.1 Materials Processing -- 17.2.2 Microstructure: Fracture Surface Analyses and Shore-D Hardness Measurements -- 17.2.3 Damage Analysis by Means of Scratch Test and 3D Optical Roughness Meter -- 17.3 Results and Discussions -- 17.3.1 Specimens and Microstructure Analyses of the Composites -- 17.3.2 Three Point Bending (3PB) Test Results and Fracture Surface Observation -- 17.3.2.1 Flexural Testing and Fracture Toughness Determination -- 17.3.3 Charpy Impact Testing -- 17.3.4 Wear Resistance by Scratch Test and Damage Analyses by Means of 3D

	Optical Roughness Meter 17.4 Conclusion References 18 Impact and Post-impact Behavior of Composite Laminates Reinforced by Z-Pins 18.1 Introduction 18.2 Materials and Testing Methods 18.3 Impact and CAI Tests 18.4 Results 18.5 Conclusions References 19 Layered Jamming Multifunctional Actuators 19.1 Introduction 19.2 Designing and Manufacturing Layered Multifunctional Materials 19.3 Modeling Structural Response of Soft Actuator with Jamming Layers 19.4 Layered Jamming Multifunctional Actuators 19.4.1 Layered Jamming Structure 19.4.2 Prototype for a Layered Jamming Multifunctional Actuator 19.4.3 Layered Jamming for Multi-mode Control of Extension and Bending for Soft Actuators 19.4.4 Integration of Layered Jamming Actuators in a Robot: ArmadilloBot 19.5 Conclusions References 20 2D Microscale Observations of Interlaminar Transverse Tensile Fracture in Carbon/Epoxy Composites 20.1 Introduction. 20.2 Experimental Methodology.
Sommario/riassunto	Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 5 of the Proceedings of the 2018 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Recycled Constituent Composites Nanocomposites Mechanics of Composites Fracture & Fatigue of Composites Multifunctional Materials Damage Detection & Non-destructive Evaluation Composites for Wind Energy & Aerospace Applications Computed Tomography of Composites Manufacturing & Joining of Composites Novel Developments in Composites.