1. Record Nr.
Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di contenuto

Sommario/riassunto

UNINA9910300747603321
Nesteruk Dmitri

Design Patterns in Modern C++ : Reusable Approaches for Object-
Oriented Software Design / / by Dmitri Nesteruk

Berkeley, CA ., : Apress :, : Imprint : Apress, , 2018

9781484236031
1484236033

[1st ed. 2018.]
1 online resource (xiii, 314 pages) : illustrations

004

Programming languages (Electronic computers)
Software engineering

Computer programming

Programming Languages, Compilers, Interpreters
Software Engineering

Programming Techniques

Inglese

Materiale a stampa
Monografia
Includes index.

1. Introduction -- Pt | Creational Patterns -- 2. Builder -- 3. Factories
-- 4. Prototype -- 5. Singleton -- Pt Il Structural Patterns -- 6. Adapter
-- 7. Bridge -- 8. Composite -- 9. Decorator -- 10. Facade -- 11.
Flyweight -- 12. Proxy -- Pt |ll Behavioral Patterns -- 13. Chain of
Responsibility -- 14. Command -- 15. Interpreter -- 16. Iterator -- 17.
Mediator -- 18. Null Object -- 19. Observer -- 20. State -- 21.
Strategy -- 22. Template Method -- 23. Visitor -- 24. Maybe Monad --
Pt IV Appendix -- 25. Appendix A: Functional Design Patterns.

Apply modern C++17 to the implementations of classic design

patterns. As well as covering traditional design patterns, this book
fleshes out new patterns and approaches that will be useful to C++
developers. The author presents concepts as a fun investigation of how
problems can be solved in different ways, along the way using varying
degrees of technical sophistication and explaining different sorts of
trade-offs. Design Patterns in Modern C++ also provides a technology
demo for modern C++, showcasing how some of its latest features (e.
g., coroutines) make difficult problems a lot easier to solve. The



examples in this book are all suitable for putting into production, with
only a few simplifications made in order to aid readability. You will:
Apply design patterns to modern C++ programming Use creational
patterns of builder, factories, prototype and singleton Implement
structural patterns such as adapter, bridge, decorator, facade and more
Work with the behavioral patterns such as chain of responsibility,
command, iterator, mediator and more Apply functional design

patterns such as Monad and more.



