Record Nr. Autore	UNINA9910300560503321 Thomas Philip A
Titolo	Narrow Plasmon Resonances in Hybrid Systems / / by Philip A. Thomas
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
ISBN	3-319-97526-9
Edizione	[1st ed. 2018.]
Descrizione fisica	1 online resource (XVII, 114 p. 49 illus., 37 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	530.417
Soggetti	Surfaces (Physics) Interfaces (Physical sciences)
	Thin films Optical materials Electronic materials
	Nanotechnology
	Surface and Interface Science, Thin Films Optical and Electronic Materials
	Electronic Circuits and Devices
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Plasmonics Two-dimensional Materials Super-narrow, Extremely High Quality Collective Plasmon Resonances at Telecommunication Wavelengths Nanomechanical Electro-optical Modulator Based on Atomic Heterostructures Strong Coupling of Diffraction Coupled Plasmons and Optical Waveguide Modes in Gold Stripe-dielectric Nanostructures at Telecom Wavelengths Phase-sensitive Detection of HT-2 Mycotoxin Using Graphene-protected Copper Plasmonics Conclusions and Future Work.
Sommario/riassunto	Advances in understanding the interactions between light and subwavelength materials have enabled the author and his collaborators to tailor unique optical responses at the nanoscale. In particular, metallic nanostructures capable of supporting surface plasmons can be designed to possess spectrally narrow plasmon resonances, which are

of particular interest due to their exceptional sensitivity to their local environment. In turn, combining plasmonic nanostructures with other materials in hybrid systems allows this sensitivity to be exploited in a broad range of applications. In this book the author explores two different approaches to attaining narrow plasmon resonances: in gold nanoparticle arrays by utilising diffraction coupling, and in copper thin films covered by a protective graphene layer. The performance of these resonances is then considered in a number of applications. Nanoparticle arrays are used along with an atomic heterostructure as elements in a nanomechanical electro-optical modulator that is capable of strong, broadband modulation. Strong coupling between diffractioncoupled plasmon resonances and a gold nanoparticle array and guided modes in a dielectric slab is used to construct a hybrid waveguide. Lastly, the extreme phase sensitivity of graphene-protected copper is used to detect trace quantities of small toxins in solution far below the detection limit of commercial surface plasmon resonance sensors.