Record Nr.	UNINA9910300560303321
Autore	Covey Jacob P
Titolo	Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules [[electronic resource] /] / by Jacob P. Covey
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
ISBN	3-319-98107-2
Edizione	[1st ed. 2018.]
Descrizione fisica	1 online resource (257 pages)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	530.12
Soggetti	Phase transformations (Statistical physics) Condensed materials Atoms Physics Low temperature physics Low temperatures Quantum Gases and Condensates Atoms and Molecules in Strong Fields, Laser Matter Interaction Low Temperature Physics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Chapter1. Introduction Chapter2. Experimental Background and Overview Chapter 3. Quantum-State Controlled Chemical Reactions and Dipolar Collisions Chapter 4. Suppression of Chemical Reactions in a 3D Lattice Chapter 5. Quantum Magnetism with Polar Molecules in a 3D Optical Lattice Chapter 6. A Low Entropy Quantum Gas of Polar Molecules in a 3D Optical Lattice Chapter 7. The New Apparatus – Enhanced Optical and Electric Manipulation of Ultracold Polar Molecules Chapter 8. Designing, Building and Testing the New Apparatus Chapter 9. Experimental Procedure – Making Molecules in the New Apparatus Chapter 10. New Physics with the New Apparatus – High Resolution Optical Detection and Large, Stable Electric Fields Chapter 11. Outlook.
Sommario/riassunto	This thesis describes significant advances in experimental capabilities

using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for guantum chemistry and guantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.