1.	Record Nr.	UNINA9910300558303321
	Autore	Gupta Shamik
	Titolo	Statistical Physics of Synchronization / / by Shamik Gupta, Alessandro Campa, Stefano Ruffo
	Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
	ISBN	3-319-96664-2
	Edizione	[1st ed. 2018.]
	Descrizione fisica	1 online resource (135 pages)
	Collana	Understanding Complex Systems, , 2191-5326
	Disciplina	530.13
	Soggetti	Statistical physics
		Mathematical physics
		Statistical Physics and Dynamical Systems
		Complexity
		Mathematical Physics
	Lingua di pubblicazione	Inglese
	Formato	Materiale a stampa
	Livello bibliografico	Monografia

	continuum limit: The Kramers equation Phase diagram: Comparison with numeric Appendix 1: The noiseless Kuramoto model with inertia: Connection with electrical power distribution models Appendix 2: Proof that the dynamics (3.9) does not satisfy detailed balance Appendix 3: Simulation details for the dynamics (3.9) Appendix 4: Derivation of the Kramers equation Appendix 5: Nature of solutions of Eq. (3.32) Appendix 6: Solution of the system of equations (3.39) Appendix 7: Convergence properties of the expansion (3.38).
Sommario/riassunto	This book introduces and discusses the analysis of interacting many- body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems.