Record Nr.	UNINA9910300551003321
Autore	Sie Edbert Jarvis
Titolo	Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides / / by Edbert Jarvis Sie
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
ISBN	3-319-69554-1
Edizione	[1st ed. 2018.]
Descrizione fisica	1 online resource (XVII, 129 p. 83 illus., 82 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	541.33
Soggetti	Surfaces (Physics)
	Interfaces (Physical sciences)
	Thin films
	Optical materials
	Electronic materials
	Spectroscopy
	Microscopy
	Lasers
	Photonics
	Semiconductors
	Atoms
	Physics
	Surface and Interface Science, Thin Films
	Optical and Electronic Materials
	Spectroscopy and Microscopy
	Optics, Lasers, Photonics, Optical Devices
	Atoms and Molecules in Strong Fields, Laser Matter Interaction
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di bibliografia	Includes bibliographical references.
Nota di contenuto	Chapter1. Introduction Chapter2. Time-resolved absorption spectroscopy Chapter3. Intervalley biexcitons in monolayer MoS2 Chapter4. Valley-selective optical Stark effect in monolayer WS2 Chapter5. Intervalley biexcitonic optical Stark effect in monolayer WS2

	Chapter6. Large, valley-exclusive BlochSiegert shift in monolayer WS2 Chapter7. LennardJones-like potential of 2D excitons in monolayer WS2 Chapter8. WUV based Time-resolved ARPES.
Sommario/riassunto	This thesis presents optical methods to split the energy levels of electronic valleys in transition-metal dichalcogenides (TMDs) by means of coherent light-matter interactions. The electronic valleys present in monolayer TMDs such as MoS2, WS2, and WSe2 are among the many novel properties exhibited by semiconductors thinned down to a few atomic layers, and have have been proposed as a new way to carry information in next generation devices (so-called valleytronics). These valleys are, however, normally locked in the same energy level, which limits their potential use for applications. The author describes experiment performed with a pump-probe technique using a transient absorption spectroscopy on MoS2 and WS2. It is demonstrated that hybridizing the electronic valleys with light allows one to optically tune their energy levels in a controllable valley-selective manner. In particular, by using off-resonance circularly polarized light at small detuning, one can tune the energy level of one valley through the optical Stark effect. Also presented within are observations, at larger detuning, of a separate contribution from the so-called BlochSiegert effect, a delicate phenomenon that has eluded direct observation in solids. The two effects obey opposite selection rules, enabling one to separate the two effects at two different valleys.