Record Nr.	UNINA9910300436203321
Autore	Takahashi Ryuji
Titolo	Topological States on Interfaces Protected by Symmetry / / by Ryuji Takahashi
Pubbl/distr/stampa	Tokyo : , : Springer Japan : , : Imprint : Springer, , 2015
ISBN	4-431-55534-X
Edizione	[1st ed. 2015.]
Descrizione fisica	1 online resource (98 p.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	530.417
Soggetti	Phase transitions (Statistical physics) Superconductivity Superconductors Surfaces (Technology) Thin films Solid state physics Surfaces (Physics) Interfaces (Physical sciences) Phase Transitions and Multiphase Systems Strongly Correlated Systems, Superconductivity Surfaces and Interfaces, Thin Films Solid State Physics Surface and Interface Science, Thin Films
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	'Doctoral Thesis accepted by Tokyo Institute of Technology, Tokyo, Japan."
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	Introduction Topological Invariant and topological Phases Gapless Interface States between Two Topological Insulators Weyl Semimetals in a Thin Topological Insulator Summary and outlook Properties of the Chern numbers Calculation for the interface Fermi loops.
Sommario/riassunto	In this book, the author theoretically studies two aspects of topological states. First, novel states arising from hybridizing surface states of topological insulators are theoretically introduced. As a remarkable example, the author shows the existence of gapless interface states at

the interface between two different topological insulators, which belong to the same topological phase. While such interface states are usually gapped due to hybridization, the author proves that the interface states are in fact gapless when the two topological insulators have opposite chiralities. This is the first time that gapless topological novel interface states protected by mirror symmetry have been proposed. Second, the author studies the Weyl semimetal phase in thin topological insulators subjected to a magnetic field. This Weyl semimetal phase possesses edge states showing abnormal dispersion, which is not observed without mirror symmetry. The author explains that the edge states gain a finite velocity by a particular form of inversion symmetry breaking, which makes it possible to observe the phenomenon by means of electric conductivity.