Record Nr.	UNINA9910300418103321
Autore	Waitukaitis Scott R
Titolo	Impact-Activated Solidification of Cornstarch and Water Suspensions / / by Scott R. Waitukaitis
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
ISBN	3-319-09183-2
Edizione	[1st ed. 2015.]
Descrizione fisica	1 online resource (100 p.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	530.41
Soggetti	Amorphous substances Complex fluids Fluids
	Spectroscopy
	Microscopy
	Soft and Granular Matter, Complex Fluids and Microfluidics
	Fluid- and Aerodynamics
	Spectroscopy and Microscopy
Lingua di pubblicazione	Spectroscopy and Microscopy
Lingua di pubblicazione	Inglese
Formato	Inglese Materiale a stampa
Formato Livello bibliografico	Inglese Materiale a stampa Monografia
Formato	Inglese Materiale a stampa Monografia Description based upon print version of record.
Formato Livello bibliografico Note generali	Inglese Materiale a stampa Monografia Description based upon print version of record.

1.

However, neither explanation accounted for the stress scales required for a person to run on the surface. Through this research, it was discovered that the impact resistance is due to local compression of the particle matrix. This compression forces the suspension across the jamming transition and precipitates a rapidly growing solid mass. This growing solid, as a result, absorbs the impact energy. This is the first observation of such jamming front, linking nonlinear suspension dynamics in a new way to the jamming phase transition known from dry granular materials.