Record Nr.	UNINA9910300385203321
Autore	Torres-Rincon Juan M
Titolo	Hadronic Transport Coefficients from Effective Field Theories [[electronic resource] /] / by Juan M. Torres-Rincon
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
ISBN	3-319-00425-5
Edizione	[1st ed. 2014.]
Descrizione fisica	1 online resource (220 p.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	539.7216
Soggetti	Nuclear physics
	Heavy ions
	Thermodynamics
	Mathematical physics
	Low temperature physics
	Low temperatures
	Nuclear Physics, Heavy Ions, Hadrons
	Theoretical, Mathematical and Computational Physics
	Low Temperature Physics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Doctoral thesis accepted by the Universidad Complutense de Madrid, Spain.
Nota di bibliografia	Includes bibliographical references and index.
Nota di contenuto	Relativistic Heavy Ion Collisions Boltzmann-Uehling-Uhlenbeck Equation Shear Viscosity and KSS Coefficient Bulk Viscosity Thermal and Electrical Conductivities Bhatnagar-Gross-Krook or Relaxation Time Approximation Strangeness Diffusion Charm Diffusion Linear Sigma Model and Phase Transitions Measurement of the Bulk Viscosity.
Sommario/riassunto	This dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after chemical freeze-out. This matter can be well approximated using a pion gas out of equilibrium. We describe the theoretical framework needed to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low

1.

temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We subsequently introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly, then go on to calculate the transport properties of the low-temperature phase of quantum chromodynamics - the hadronic medium - which can be used in hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase transition by studying this coefficient in atomic Argon (around the liquid-gas phase transition) and in the linear sigma model in the limit of a large number of scalar fields (which presents a chiral phase transition). Finally, we provide an experimental method for estimating the bulk viscosity in relativistic heavy-ion collisions by performing correlations of the fluctuating components of the stress-energy tensor.