Record Nr.	UNINA9910300243703321
Titolo	Multiple Shooting and Time Domain Decomposition Methods : MuS- TDD, Heidelberg, May 6-8, 2013 / / edited by Thomas Carraro, Michael Geiger, Stefan Körkel, Rolf Rannacher
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
ISBN	3-319-23321-1
Edizione	[1st ed. 2015.]
Descrizione fisica	1 online resource (424 p.)
Collana	Contributions in Mathematical and Computational Sciences, , 2191- 303X ; ; 9
Disciplina	515.353
Soggetti	Computer mathematics Partial differential equations Calculus of variations Numerical analysis Fluid mechanics Applied mathematics Engineering mathematics Computational Mathematics and Numerical Analysis Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Numeric Computing Engineering Fluid Dynamics Applications of Mathematics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	"Mathematics Center Heidelberg (MATCH) and the Interdisciplinary Center for Scientific Computing (IWR) with its Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS) are in charge of providing and preparing the material for publication."
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	T. Akman et al: Space-Time Discontinuous Galerkin Methods for Optimal Control Problems Governed by Time Dependent Diffusion- Convection-Reaction Equations Th. Carraro et al: Direct and Indirect Multiple Shooting for Parabolic Optimal Control Problems M.J.

	Gander: 50 Years of Time Parallel Time Integration S. Grötschel et al: Reducing Memory Requirements in Scientific Computing and Optimal Control Y. Hasegawa: Optimal Control of Heat and Fluid Flow for Efficient Energy Utilization D. Janka et al: Direct Multiple Shooting for Optimum Experimental Design D. Kaschek et al: A Unified Approach to Integration and Optimization of Parametric Ordinary Differential Equations R. Kircheis et al: Parameter Estimation for PDAE Constrained Models Using a Reduced Approach M. Klinger: A Variational Approach for Physically Based Image Interpolation Across Boundaries C. Kreutz et al: Statistics for Model Calibration A. Potschka: Direct Multiple Shooting for Parabolic PDE Constrained Optimization R. Quirynen et al: Multiple Shooting in a Microsecond Th. Richter et al: Time Discretizations of Fluid-Structure Interactions St. Ulbrich: Preconditioners Based on 'Parareal' Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization E. Kostina et al: Direct Multiple Shooting for Optimization Problems in ODE Models M. Schlick: Parareal Time-Stepping for Limit-Cycle Computation of the Incompressible Navier-Stokes Equations with Uncertain Periodic Dynamics.
Sommario/riassunto	This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time- dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms. The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics. This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied mathematicians, computer scientists and all scientists using mathematical methods.