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The work of E. Hopf and G.A. Hedlund, in the 1930s, on transitivity and
ergodicity of the geodesic flow for hyperbolic surfaces, marked the
beginning of the investigation of the statistical properties and
stochastic behavior of the flow. The first central limit theorem for the
geodesic flow was proved in the 1960s by Y. Sinai for compact
hyperbolic manifolds. Since then, strong relationships have been found
between the fields of ergodic theory, analysis, and geometry. Different
approaches and new tools have been developed to study the geodesic
flow, including measure theory, thermodynamic formalism, transfer
operators, Laplace operators, and Brownian motion. All these different
points of view have led to a deep understanding of more general
dynamical systems, in particular the so-called Anosov systems, with
applications to geometric problems such as counting, equirepatrtition,
mixing, and recurrence properties of the orbits. This book comprises
two independent texts that provide a self-contained introduction to

two different approaches to the investigation of hyperbolic dynamics.
The first text, by S. Le Borgne, explains the method of martingales for
the central limit theorem. This approach can be used in several
situations, even for weakly hyperbolic flows, and the author presents a
good number of examples and applications to equirepartition and
mixing. The second text, by F. Faure and M. Tsujii, concerns the
semiclassical approach, by operator theory: chaotic dynamics is
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described through the spectrum of the associated transfer operator,
with applications to the asymptotic counting of periodic orbits. The
book will be of interest for a broad audience, from PhD and Post-Doc
students to experts working on geometry and dynamics.



