1.	Record Nr. Autore Titolo	UNINA9910299965603321 Orlov Yury V Advanced H control : towards nonsmooth theory and applications / /
	Pubbl/distr/stampa	by Yury V. Orlov, Luis T. Aguilar New York, NY : , : Springer New York : , : Imprint : Birkhäuser, , 2014
	ISBN	1-4939-0292-X
	Edizione	[1st ed. 2014.]
	Descrizione fisica	1 online resource (222 pages)
	Collana	Systems & Control: Foundations & Applications, , 2324-9749
	Disciplina	629.8312
	Soggetti	System theory Vibration Dynamics Ergodic theory Differential equations, Partial Applied mathematics Engineering mathematics Systems Theory, Control Vibration, Dynamical Systems, Control Dynamical Systems and Ergodic Theory Partial Differential Equations Mathematical and Computational Engineering Applications of Mathematics
	Lingua di pubblicazione	Inglese
	Formato	Materiale a stampa
	Livello bibliografico	Monografia
	Note generali	Bibliographic Level Mode of Issuance: Monograph
	Nota di bibliografia	Includes bibliographical references and index.
	Nota di contenuto	Part I Introduction 1 Linear H1 control of autonomous systems 2 LMI approach in infinite dimensional setting 3 Linear H1 control of time-varying systems 4 Nonlinear H1 control Part II Nonsmooth H1 Control 5 Elements of nonsmooth analysis 6 Synthesis of nonsmooth systems 7 LMI-based H1 boundary control of nonsmooth parabolic and hyperbolic systems Part III Benchmark Applications 8 Advanced H1 synthesis of fully actuated robot manipulators with frictional joints 9 Nonsmooth H1 synthesis in the presence of backlash 10 H1 generation of periodic motion 11 LMI-based H1 synthesis of the current profile in tokamak plasmas

	References Index.
Sommario/riassunto	This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H approach in the nonsmooth setting. Similar to the standard nonlinear H approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements. Advanced H Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite- dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues. Requiring familiarity with nonlinear systems theory, this book will be accessible to graduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.