Record Nr.	UNINA9910299579503321
Autore	Campelo Hugo
Titolo	FluSHELL – A Tool for Thermal Modelling and Simulation of Windings for Large Shell-Type Power Transformers [[electronic resource] /] / by Hugo Campelo
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
ISBN	3-319-72703-6
Edizione	[1st ed. 2018.]
Descrizione fisica	1 online resource (XXXIII, 188 p. 128 illus., 54 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	536.7
Soggetti	Fluid mechanics
	Power electronics
	Thermodynamics
	Heat engineering
	Heat transfer
	Mass transfer
	Computer mathematics
	Chemical engineering
	Materials science
	Force and energy
	Engineering Fluid Dynamics
	Power Electronics, Electrical Machines and Networks
	Computational Science and Engineering
	Industrial Chemistry/Chemical Engineering
	Energy Materials
Lingua di pubblicazione	
Formato	Materiale a stampa
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	Introduction Scale Model CFD Sclae Model The FluSHELL Tool FluSHELL Validation Conclusions and Future Work.
Sommario/riassunto	This thesis addresses a novel application of network modelling methodologies to power transformers. It develops a novel thermal

model and compares its performance against that of a commercial computational fluid dynamics (CFD) code, as well as in experiments conducted in a dedicated setup built exclusively for this purpose. Hence, the thesis cross-links three of the most important aspects in high-quality research: model development, simulation and experimental validation. Network modelling is used to develop a tool to simulate the thermal performance of power transformers, widely acknowledged to be critical assets in electrical networks. After the strong de-regulation of electricity markets and de-carbonization of worldwide economies, electrical networks have been changing fast. Both asset owners and equipment manufacturers are being driven to develop increasingly accurate modelling capabilities in order to optimize either their operation or their design. Temperature is a critical parameter in every electric machine and power transformers are no exception. As such, the thesis is relevant for a wide range of stakeholders, from utilities to power transformer manufacturers, as well as researchers interested in the energy industry. It is written in straightforward language and employs a highly pedagogic approach, making it also suitable for non-experts.