Record Nr.	UNINA9910299462503321
Autore	Freni Pierluigi
Titolo	Innovative Hand Exoskeleton Design for Extravehicular Activities in Space / / by Pierluigi Freni, Eleonora Marina Botta, Luca Randazzo, Paolo Ariano
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
ISBN	3-319-03958-X
Edizione	[1st ed. 2014.]
Descrizione fisica	1 online resource (98 p.)
Collana	PoliMI SpringerBriefs, , 2282-2577
Disciplina	629.4584
Soggetti	Aerospace engineering Astronautics Robotics Automation Ceramics Glass Composites (Materials) Composite materials Biomedical engineering Aerospace Technology and Astronautics Robotics and Automation Ceramics, Glass, Composites, Natural Materials Biomedical Engineering and Bioengineering
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Description based upon print version of record.
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	Introduction Users' Requirements State of the Art The Solution Concept Layout Conclusions.
Sommario/riassunto	Environmental conditions and pressurized spacesuits expose astronauts to problems of fatigue during lengthy extravehicular activities, with adverse impacts especially on the dexterity, force and endurance of the hands and arms. A state-of-the-art exploration in the field of hand exoskeletons revealed that available products are unsuitable for space applications because of their bulkiness and mass.

This book proposes a novel approach to the development of hand exoskeletons, based on an innovative soft robotics concept that relies on the exploitation of electroactive polymers operating as sensors and actuators, on a combination of electromyography and mechanomyography for detection of the user's will and on neural networks for control. The result is a design that should enhance astronauts' performance during extravehicular activities. In summary, the advantages of the described approach are a low-weight, highflexibility exoskeleton that allows for dexterity and compliance with the user's will.