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Key-value stores, which are commonly used as data platform for
various web applications, provide a distributed solution for cloud
computing and big data management.  In modern web applications,
user experience satisfaction determines their success . In real
application, different web queries or users produce different
expectations in terms of query latency (i.e., Quality of Service (QoS))
and data freshness (i.e., Quality of Data (QoD)).  Hence, the question of
how to optimize QoS and QoD by scheduling queries and updates in
key-value stores has become an essential research issue. This book
comprehensively illustrates quality-ware scheduling in key-value
stores. In addition, it provides scheduling strategies and a prototype
framework for a quality-aware scheduler, as well as a demonstration of
online applications. The book offers a rich blend of theory and practice,
making it suitable for students, researchers and practitioners interested
in distributed systems, NoSQL key-value stores and scheduling.


