
UNINA99102992408033211. Record Nr.

Titolo Quality-aware Scheduling for Key-value Data Stores / / by Chen Xu,
Aoying Zhou

Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer,
, 2015

ISBN 3-662-47306-2

Descrizione fisica 1 online resource (102 p.)

Collana SpringerBriefs in Computer Science, , 2191-5768

Disciplina 005.7565

Soggetti Database management
Application software
Operating systems (Computers)
Database Management
Information Systems Applications (incl. Internet)
Operating Systems

Lingua di pubblicazione Inglese

Formato

Edizione [1st ed. 2015.]

Livello bibliografico

Note generali Description based upon print version of record.

Nota di bibliografia

Nota di contenuto

Includes bibliographical references at the end of each chapters.

Preface; Acknowledgments; Contents; 1 Introduction; 1.1 Application
Scenarios; 1.2 The Research Significance and Challenges; 1.3
Implementation Framework; 1.4 Overview of the Book; References; 2
Literature and Research Review; 2.1 Metrics for Quality-Aware
Scheduling; 2.1.1 QoS Metrics; 2.1.2 QoD Metrics; 2.2 Quality-Aware
Scheduling in Data Management System; 2.2.1 Quality-Aware
Scheduling in RTDBMS; 2.2.2 Quality-Aware Scheduling in DSMS; 2.2.3
Quality-Aware Scheduling in RDBMS; 2.2.4 Quality-Aware Scheduling in
Key-Value Stores; 2.3 Summary; References; 3 Problem Overview
3.1 Background Knowledge3.1.1 Data Organization; 3.1.2 Data
Replication and Consistency; 3.1.3 User Queries; 3.1.4 System Updates:
State-Transfer Versus Operation-Transfer; 3.2 Problem Statement;
3.2.1 QoS Penalty; 3.2.2 QoD Penalty; 3.2.3 Combined Penalty; 3.3
Summary; References; 4 Scheduling for State-Transfer Updates; 4.1
On-Demand (OD) Mechanism; 4.1.1 WSJF-OD; 4.2 Hybrid On-Demand
(HOD) Mechanism; 4.2.1 WSJF-HOD; 4.3 Freshness/Tardiness (FIT)
Mechanism; 4.3.1 WSJF-FIT; 4.4 Adaptive Freshness/Tardiness (AFIT)

Autore Xu Chen

Materiale a stampa

Monografia



Sommario/riassunto

Mechanism; 4.4.1 Query Routing; 4.4.2 Query Selection; 4.4.3 WSJF-
AFIT
4.5 Popularity-Aware Mechanism4.5.1 Populairty-Aware WSJF-OD;
4.5.2 Populairty-Aware WSJF-HOD; 4.5.3 Popularity-Aware WSJF-FIT;
4.5.4 Popularity-Aware WSJF-AFIT; 4.6 Experimental Study; 4.6.1
Baseline Policies; 4.6.2 Parameter Setting; 4.6.3 Impact of Query Arrival
Rate; 4.6.4 Impact of Update Cost; 4.6.5 Impact of Different QoS and
QoD Preferences; 4.6.6 Impact of Popularity; 4.7 Summary; References;
5 Scheduling for Operation-Transfer Updates; 5.1 Hybrid On-Demand
(HOD) Mechanism; 5.1.1 WSJF-HOD; 5.2 Freshness/Tardiness (FIT)
Mechanism; 5.2.1 WSJF-FIT; 5.3 Popularity-Aware Mechanism
5.3.1 Popularity-Aware WSJF-HOD5.3.2 Popularity-Aware WSJF-FIT; 5.4
Experimental Study; 5.4.1 Parameter Setting; 5.4.2 Impact of Update
Arrival Rate; 5.4.3 Impact of Popularity and Approximation; 5.5
Summary; References; 6 AQUAS: A Quality-Aware Scheduler; 6.1
System Overview; 6.1.1 System Goals; 6.1.2 System Design; 6.2 System
Performance; 6.2.1 Benchmark; 6.2.2 Evaluation Result; 6.3 A
Demonstration on MicroBlogging Application; 6.3.1 Timeline Queries in
AQUAS; 6.3.2 A Case Study; 6.4 Summary; References; 7 Conclusion
and Future Work; 7.1 Conclusion; 7.2 Future Work; References
Key-value stores, which are commonly used as data platform for
various web applications, provide a distributed solution for cloud
computing and big data management.  In modern web applications,
user experience satisfaction determines their success . In real
application, different web queries or users produce different
expectations in terms of query latency (i.e., Quality of Service (QoS))
and data freshness (i.e., Quality of Data (QoD)).  Hence, the question of
how to optimize QoS and QoD by scheduling queries and updates in
key-value stores has become an essential research issue. This book
comprehensively illustrates quality-ware scheduling in key-value
stores. In addition, it provides scheduling strategies and a prototype
framework for a quality-aware scheduler, as well as a demonstration of
online applications. The book offers a rich blend of theory and practice,
making it suitable for students, researchers and practitioners interested
in distributed systems, NoSQL key-value stores and scheduling.


