Record Nr.	UNINA9910298623603321
Autore	Yang Yangyang
Titolo	Artificially Controllable Nanodevices Constructed by DNA Origami Technology : Photofunctionalization and Single-Molecule Analysis / / by Yangyang Yang
Pubbl/distr/stampa	Tokyo : , : Springer Japan : , : Imprint : Springer, , 2015
ISBN	4-431-55769-5
Edizione	[1st ed. 2015.]
Descrizione fisica	1 online resource (82 p.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	540
Soggetti	Nanochemistry
	Nanotechnology
	Microscopy
	Spectroscopy Biological Microscopy
	Spectroscopy and Microscopy
Lingua di pubblicazione	Inglese
Lingua ui pubblicazione	Inglobo
Formato	Materiale a stampa
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia
Formato Livello bibliografico Note generali	Materiale a stampa Monografia Description based upon print version of record.

1.

AFM makes possible the real-time observation of molecule behaviors. DNA nanostructures were designed and assembled as scaffolds to incorporate interested biomolecules. The observations were carried out under robust conditions without complicated pretreatment. Moreover, the photoresponsive molecules were successfully assembled into around 100 nm-sized DNA nanostructures. The assembly/disassembly of nanostructures can be regulated reversibly by photoirradiation. This book explains how DNA origami has gradually become a useful tool for the investigation of biochemical interactions in defined nanospace. It also shows the possibility of DNA nanostructures acting as nanodevices for application in biological systems, serving as a good introduction to basic DNA nanotechnology.