| Record Nr. | UNINA9910298601103321 |
| :---: | :---: |
| Titolo | Advanced Analytical Methods in Tribology [[electronic resource]/]/ edited by Martin Dienwiebel, Maria-Isabel De Barros Bouchet |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, 2018 |
| ISBN | 3-319-99897-8 |
| Edizione | [1st ed. 2018.] |
| Descrizione fisica | 1 online resource (332 pages) |
| Collana | Microtechnology and MEMS, , 1615-8326 |
| Disciplina | 621.89 |
| Soggetti | Tribology <br> Corrosion and anti-corrosives <br> Coatings <br> Surfaces (Physics) <br> Interfaces (Physical sciences) <br> Thin films <br> Materials science <br> Nanotechnology <br> Physical measurements <br> Measurement <br> Mechanics <br> Tribology, Corrosion and Coatings <br> Surface and Interface Science, Thin Films <br> Characterization and Evaluation of Materials <br> Nanotechnology and Microengineering <br> Measurement Science and Instrumentation <br> Classical Mechanics |
| Lingua di pubblicazione | Inglese |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Nota di contenuto | Introduction -- Microstructural Characterization -- Chemical Characterization -- Mechanical Characterization -- Topography Analysis -- Numerical Calculations. |
| Sommario/riassunto | Friction and wear phenomena are governed by processes at the |

interface of sliding surfaces. For a detailed understanding of these phenomena many surface sensitive techniques have become available in recent years. This book gives an overview of the basics and methods of state-of-the-art nanoscale analytical techniques for researchers and practitioners in the field of tribology. It provides guidance and shows examples of the application of mechanical, microstructural, chemical characterization methods and topography analysis of materials. The applied methods are atom probe tomography, TEM, SERS, NEXAFS, insitu XPS, nanoindentation and in situ Raman spectroscopy. A survey of related numerical calculations completes the book. These include abinitio and molecular dynamics coupling, numerical calculations for mechanical aspects and density functional theory to study chemical reactivity.

