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A comprehensive introduction to various numerical methods used in
computational finance today Quantitative skills are a prerequisite for
anyone working in finance or beginning a career in the field, as well as
risk managers. A thorough grounding in numerical methods is
necessary, as is the ability to assess their quality, advantages, and
limitations. This book offers a thorough introduction to each method,
revealing the numerical traps that practitioners frequently fall into.
Each method is referenced with practical, real-world examples in the
areas of valuation, risk analysis, and calibration of specific financial
instruments and models. It features a strong emphasis on robust
schemes for the numerical treatment of problems within computational
finance. Methods covered include PDE/PIDE using finite differences or
finite elements, fast and stable solvers for sparse grid systems,
stabilization and regularization techniques for inverse problems
resulting from the calibration of financial models to market data, Monte
Carlo and Quasi Monte Carlo techniques for simulating high
dimensional systems, and local and global optimization tools to solve
the minimization problem.


