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Consisting of two parts, the first part of this volume is an essentially
self-contained exposition of the geometric aspects of local and global



regularity theory for the Monge–Ampère and linearized Monge–Ampère
equations. As an application, we solve the second boundary value
problem of the prescribed affine mean curvature equation, which can
be viewed as a coupling of the latter two equations. Of interest in its
own right, the linearized Monge–Ampère equation also has deep
connections and applications in analysis, fluid mechanics and
geometry, including the semi-geostrophic equations in atmospheric
flows, the affine maximal surface equation in affine geometry and the
problem of finding Kahler metrics of constant scalar curvature in
complex geometry. Among other topics, the second part provides a
thorough exposition of the large time behavior and discounted
approximation of Hamilton–Jacobi equations, which have received much
attention in the last two decades, and a new approach to the subject,
the nonlinear adjoint method, is introduced. The appendix offers a
short introduction to the theory of viscosity solutions of first-order
Hamilton–Jacobi equations. .


